

Mastering Ubuntu Server
Fourth Edition

Explore the versatile, powerful Linux Server distribution Ubuntu 22.04 with
this comprehensive guide

Jay LaCroix

BIRMINGHAM—MUMBAI

Mastering Ubuntu Server
Fourth Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Aaron Tanna
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Namrata Katare
Content Development Editor: Liam Thomas Draper
Copy Editor: Safis Editing
Technical Editor: Aditya Sawant
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Ganesh Bhadwalkar

First published: July 2016
Second edition: May 2018
Third edition: December 2020
Fourth edition: September 2022

Production reference: 1140922

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-80323-424-3

www.packt.com

http://www.packt.com

Contributors

About the author
Based in Michigan, Jay LaCroix is an educator and technologist, specializing in Linux. After a
successful tech career, Jay recently stepped away from corporate IT in order to launch his own company,
LearnLinuxTV. There, Jay has produced hundreds of Linux-related training videos that are viewed
by a half million people per month on average. In addition, Jay also writes books on Linux, with this
one being a recent example.

Outside of technology, Jay also enjoys retro-gaming and martial arts.

I would like to thank all of my readers and subscribers for making all of this possible. It’s an amazing honor
that you’ve chosen me to lead you on your Linux journey! Also thanks to Tom Lawrence for encouraging me
and giving me lots of advice. Last (but by no means least), thanks to my partner Alan, my sons, and all of
my family and friends.

About the reviewers
Paride Legovini is a core Ubuntu developer, a Debian developer, and currently an Ubuntu Server
software engineer at Canonical. He does packaging, Quality Assurance, and maintains the testing
and continuous integration infrastructure of team-developed projects, like cloud-init and the Ubuntu
Advantage tools, which includes automated integration testing done on all the major clouds. He has
also joined the release engineering team for all the new Ubuntu releases since 2019, being responsible
for the quality of Ubuntu Server.

His professional past is in academia, with an MSc in Physics, a Ph.D. in Geophysics, and his professional
roles often been at the intersection between science and IT in different research institutions.

He spent 2014 in Antarctica, where he was in charge of maintenance and data acquisition, storage,
backup, and transmission for several international scientific projects at the Concordia research station
during the polar winter. The role leveraged Paride’s all-around tinkerer nature, sometimes requiring
operating a power tool, a soldering iron, and a Unix shell, not necessarily in that order.

I would like to thank the Debian project for giving the world a universal operating system for anybody to
run, study, modify, and share. Debian realized the promise that free software would empower people, and
has had a significant impact on my life and career. Thanks also to Canonical for popularizing GNU/Linux
and for allowing me to participate in this review, to Jay LaCroix for turning what is clearly genuine passion
into such an enjoyable book, and to Packt for inviting me to be a reviewer.

Mario Splivalo’s amazement with computers started back when Commodore 64 dominated the
“user-space.” He took his first steps using BASIC on his dad’s Commodore 64 before quickly shifting to
assembler. He gradually moved to PCs where he discovered a great love for programming, systems
design, and database administration. He switched to Linux (Knoppix, then Ubuntu) in the early
2000s and never looked back. He continued as a database administrator, programmer, and system
administrator.

Mario spent five years with Canonical working mainly as an OpenStack engineer. It was a great
experience that helped Mario to see how Ubuntu is created “from the inside”, and participate in its
development.

Currently, Mario works as a consultant dealing with databases extending into modern cloud-based
architectures.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

Table of Contents

Preface � xi

Chapter 1: Deploying Ubuntu Server � 1

Technical requirements ��� 2
Determining your server’s role ��� 2
Choosing a device for our server �� 3

Physical server • 3
Physical desktop • 4
Laptop • 4
Virtual machine • 5
Virtual private server • 5
Raspberry Pi • 5

Obtaining installation media ��� 6
Creating a bootable flash drive ��� 8

Planning the partitioning layout • 11
Installing Ubuntu Server ��� 12
Installing Ubuntu on a Raspberry Pi �� 25
Summary �� 28
Relevant tutorials �� 29

Chapter 2: Managing Users and Permissions � 31

Understanding the purpose of users and groups ��� 32
Understanding when to use root �� 32

Using sudo to run privileged commands • 33
Creating and removing users ��� 34

Using useradd • 34
Using adduser • 36

Table of Contentsii

Removing users • 37
Understanding the /etc/passwd and /etc/shadow files ��� 39

Understanding the /etc/passwd file • 39
Understanding the /etc/shadow file • 41

Distributing default configuration files with /etc/skel �� 43
Switching users ��� 45
Managing groups �� 46
Managing passwords and password policies ��� 49

Locking and unlocking user accounts • 49
Setting password expiration information • 50
Setting a password policy • 51

Configuring administrator access with sudo ��� 53
Setting permissions on files and directories ��� 56

Viewing permissions • 56
Changing permissions • 59
Changing the ownership of objects • 60

Summary �� 61
Relevant videos ��� 61
Further reading ��� 62

Chapter 3: Managing Software Packages � 63

Understanding Linux package management ��� 63
Understanding the differences between Debian and Snap packages �� 65

Debian packages • 65
Snap packages • 66

Installing and removing software ��� 68
Managing Debian packages with apt • 68
Managing Snap packages with snap • 71

Searching for packages �� 73
Managing package repositories �� 75

Adding additional repositories • 75
Adding Personal Package Archives • 77

Backing up and restoring Debian packages ��� 78
Cleaning up orphaned apt packages ��� 79
Taking advantage of hardware enablement updates �� 81
Summary �� 83
Relevant video ��� 83

Table of Contents iii

Further reading ��� 83

Chapter 4: Navigating and Essential Commands � 85

Learning essential Linux commands �� 85
Understanding the Linux filesystem layout ��� 89
Viewing the contents of files �� 91
Viewing application log files �� 94
Summary �� 95
Relevant video ��� 95
Further reading ��� 95

Chapter 5: Managing Files and Directories � 97

Copying, moving, and renaming files and directories ��� 97
Editing files with the Nano and Vim text editors �� 99

Editing with Nano • 100
Editing with Vim • 102

Input and output streams �� 108
Using symbolic and hard links ��� 111
Summary �� 113
Relevant videos ��� 113

Chapter 6: Boosting Your Command-line Efficiency � 115

Understanding the Linux shell ��� 115
Understanding Bash history �� 117
Learning some useful command-line tricks �� 119
Understanding variables �� 122
Writing simple scripts ��� 124
Putting it all together – Writing an rsync backup script ��� 129
Summary �� 131
Relevant videos ��� 131
Further reading ��� 131

Chapter 7: Controlling and Managing Processes � 133

Managing jobs ��� 133
Understanding the ps command �� 136

Viewing running processes with ps • 136

Table of Contentsiv

Configuring arguments to ps • 137
Changing the priority of processes ��� 141
Dealing with misbehaving processes �� 145
Managing system processes ��� 148
Scheduling tasks with cron �� 151
Summary �� 153
Relevant videos ��� 154
Further reading ��� 154

Chapter 8: Monitoring System Resources � 155

Viewing disk usage �� 155
Using df • 156
Diving deeper into disk usage • 158

Monitoring memory usage ��� 161
Understanding server memory • 161
Managing swap • 163

Understanding load average �� 166
Viewing resource usage with htop �� 168
Summary �� 172
Relevant videos ��� 172
Further reading ��� 172

Chapter 9: Managing Storage Volumes � 173

Adding additional storage volumes ��� 173
Formatting and partitioning storage devices ��� 176

Creating a partition • 177
Formatting partitions • 180

Mounting and unmounting volumes ��� 182
Understanding the /etc/fstab file �� 184

Analyzing the contents of /etc/fstab • 184
Adding to the /etc/fstab file • 186

Backing up and restoring volumes ��� 188
Utilizing LVM �� 190

Getting started with LVM • 191
Formatting logical volumes • 195
Removing volumes with LVM • 197
Understanding LVM snapshots • 198

Table of Contents v

Summary �� 199
Relevant videos ��� 200
Further reading ��� 200

Chapter 10: Connecting to Networks � 201

Setting the hostname ��� 201
Managing network interfaces �� 204
Assigning static IP addresses ��� 209
Understanding Linux name resolution ��� 213
Getting started with OpenSSH �� 215

Installing OpenSSH • 216
Issuing commands with OpenSSH • 217

Getting started with SSH key management ��� 219
Generating public and private keys • 220
Copying your public key to a remote server • 221
Utilizing an SSH agent • 222
Changing the passphrase of an OpenSSH key • 223

Simplifying SSH connections with a config file ��� 223
Summary �� 225
Relevant videos ��� 225
Further reading ��� 225

Chapter 11: Setting Up Network Services � 227

Planning your IP address scheme ��� 227
Setting up a DHCP server for serving IP addresses �� 231
Adding a DNS server �� 236

Setting up external DNS with bind • 237
Setting up internal DNS and adding hosts • 239

Setting up an internet gateway ��� 243
Summary �� 245
Further reading ��� 245

Chapter 12: Sharing and Transferring Files � 247

File server considerations �� 247
Sharing files with Windows users via Samba ��� 249
Setting up NFS shares �� 254

Table of Contentsvi

Transferring files with rsync �� 258
Transferring files with SCP �� 261
Summary �� 263
Relevant videos ��� 263
Further reading ��� 263

Chapter 13: Managing Databases � 265

Preparations for setting up a database server ��� 265
Installing MariaDB �� 267
Understanding the MariaDB configuration files �� 269
Managing MariaDB databases �� 272
Setting up a secondary database server �� 278
Summary �� 283
Further reading ��� 283

Chapter 14: Serving Web Content � 285

Installing and configuring Apache ��� 285
Installing additional Apache modules �� 291
Securing Apache with TLS ��� 293
Installing and configuring NGINX �� 299
Setting up and configuring Nextcloud �� 303
Summary �� 310
Relevant videos ��� 310
Further reading ��� 310

Chapter 15: Automating Server Configuration with Ansible � 313

Understanding the need for configuration management ��� 313
Why Ansible? �� 315
Creating a Git repository �� 316
Getting started with Ansible �� 319
Making your servers do your bidding ��� 321

Setting up an inventory file and configuring Ansible settings • 321
Configuring client servers • 323

Putting it all together – automating web server deployment �� 327
Using Ansible’s pull method ��� 330
Summary �� 334

Table of Contents vii

Relevant videos ��� 334
Further reading ��� 334

Chapter 16: Virtualization � 337

Prerequisites and considerations ��� 337
Setting up a virtual machine server �� 339
Creating virtual machines ��� 345
Bridging the virtual machine network �� 351
Simplifying virtual machine creation with cloning ��� 354
Managing virtual machines via the command line �� 356
Summary �� 357
Relevant video ��� 357
Further reading ��� 357

Chapter 17: Running Containers � 359

What is containerization? �� 359
Understanding the differences between Docker and LXD �� 361
Installing Docker ��� 362
Managing Docker containers ��� 363
Automating Docker image creation with Dockerfiles ��� 371
Managing LXD containers �� 373
Summary �� 377
Relevant videos ��� 377
Further reading ��� 377

Chapter 18: Container Orchestration � 379

Container orchestration �� 380
Preparing a lab environment for Kubernetes testing ��� 381
Utilizing MicroK8s ��� 383

Installing MicroK8s on Linux • 383
Installing MicroK8s on macOS • 384
Installing MicroK8s on Windows • 386
Interacting with MicroK8s • 390

Setting up a Kubernetes cluster �� 392
Preliminary setup • 393
Installing Kubernetes • 397

Table of Contentsviii

Deploying containers via Kubernetes ��� 402
Summary �� 408
Relevant videos ��� 408
Further reading ��� 408

Chapter 19: Deploying Ubuntu in the Cloud � 409

Understanding the difference between on-premises and cloud infrastructure ������������������������� 410
Important considerations when considering cloud computing as a potential solution �������������� 411
Becoming familiar with some basic AWS concepts �� 413
Creating an AWS account ��� 416

Signing up for AWS • 417
Implementing basic user security • 421

Choosing a region ��� 427
Deploying Ubuntu as an AWS EC2 instance ��� 428

Setting up an IAM role for Session Manager • 428
Creating an Ubuntu Server instance in AWS • 432

Creating and deploying Ubuntu AMIs ��� 444
Automatically scaling Ubuntu EC2 deployments with Auto Scaling �� 446

Creating a launch template • 447
Creating an Auto Scaling group • 448

Keeping costs down: understanding how to save money and make cost-effective decisions ������ 455
Viewing billing information • 455
Adding a billing alert • 456
Removing unneeded backups • 456
Running EC2 instances only when they’re needed • 456
Stopping or terminating unneeded EC2 instances • 457

Taking the cloud further: additional resources to grow your knowledge ���������������������������������� 457
Online training and labs • 457
Certification • 458
Keep experimenting and learning • 458
AWS documentation • 458

Summary �� 458
Further reading ��� 459

Chapter 20: Automating Cloud Deployments with Terraform � 461

Why it’s important to automate your infrastructure �� 462
Introduction to Terraform and how it can fit within your workflow ��� 463

Table of Contents ix

Installing Terraform �� 465
Automating an EC2 instance deployment �� 470
Managing security groups with Terraform �� 476
Using Terraform to destroy unused resources ��� 479
Combining Ansible with Terraform for a full deployment solution �� 481
Summary �� 484

Chapter 21: Securing Your Server � 485

Lowering your attack surface ��� 485
Understanding and responding to CVEs ��� 490
Installing security updates �� 490
Automatically installing patches with the Canonical Livepatch service ������������������������������������ 494
Securing OpenSSH �� 495
Installing and configuring Fail2ban �� 498
MariaDB best practices for secure database servers �� 502
Setting up a firewall ��� 505
Encrypting and decrypting disks with LUKS ��� 507
Locking down sudo ��� 509
Summary �� 510
Further reading ��� 510

Chapter 22: Troubleshooting Ubuntu Servers � 511

Evaluating the scope �� 511
Conducting a root cause analysis �� 513
Viewing system logs �� 515
Tracing network issues �� 520
Troubleshooting resource issues �� 524
Diagnosing defective RAM ��� 527
Summary �� 530
Further reading ��� 530

Chapter 23: Preventing Disasters � 531

Preventing disasters �� 531
Utilizing Git for configuration management �� 533
Implementing a backup plan ��� 538
Utilizing bootable recovery media �� 540

Table of Contentsx

Summary �� 541
Further reading ��� 542

Other Books You May Enjoy � 545

Index � 549

Preface

Linux is an exciting platform. You can literally find it everywhere—desktops, laptops, phones, embedded
appliances, and especially servers. Linux servers power many famous technologies around the world,
and have a massive presence in physical and cloud server environments. Linux servers are scalable,
stable, and powerful.

Way back in 1991, a computer science student in Finland, named Linus Torvalds, created a kernel
as a school project. He created the Linux kernel. And little did he know at the time, Linux would see
us through some of the most exciting innovations in infrastructure design. Things like multicore
processors, virtualization, containerization, and cloud computing (to name a few) have transformed
data centers all over the world. And Linux has been a part of all of those advancements.

Ubuntu, a popular distribution of Linux, has been a major driving force in the adoption of Linux.
Ever since its first release back in 2004, Ubuntu has made Linux more approachable for newcomers,
while simultaneously offering powerful features to server administrators. Ubuntu can be found on
notebooks and workstations, in addition to servers.

Ubuntu Server enables administrators to create efficient, flexible, and highly available servers that
empower organizations with the power of open source. As Ubuntu administrators, we’re in good
company—according to W3Techs, Ubuntu is the most widely deployed distribution on the web with
regard to Linux. With the release of Ubuntu 22.04, this platform becomes even more exciting!

In this book, we will dive right into Ubuntu Server, and you will learn all the concepts needed to
manage your servers and configure them to perform all kinds of neat tasks, such as serving web pages,
managing virtual machines, running containers, automating configuration, sharing files with other
users, and even running Ubuntu in the cloud.

We’ll start our journey with the first chapter, where we’ll walk through the installation of Ubuntu
Server 22.04, which will serve as a foundation for the rest of the book. As we proceed through our
journey, we’ll look at managing users, connecting to networks, and controlling processes. Later, we’ll
implement important technologies, such as DHCP, DNS, Apache, MariaDB, and more. We’ll even set
up our own Nextcloud server along the way.

Finally, the end of the book covers various things we can do to troubleshoot issues, as well as preventing
and recovering from disasters.

Prefacexii

Who this book is for
This book is intended for readers with intermediate or advanced-beginner Linux skills, who would
like to learn all about setting up servers with Ubuntu Server. This book assumes that the reader knows
the basics of Linux, such as editing configuration files and running basic commands. In addition,
this book assumes a basic understanding of fundamental networking concepts, such as DHCP, DNS,
IP Addresses, and so on. Also, this book assumes that the reader understands the purpose of basic
network hardware, such as routers, switches, and similar hardware.

What this book covers
Chapter 1, Deploying Ubuntu Server, covers the installation process for Ubuntu Server. This chapter
walks you through creating bootable media and the installation process.

Chapter 2, Managing Users and Permissions, covers user management in full. Topics here will include
creating and removing users, configuring password policies, and using the sudo command, as well
as group management and switching from one user to another.

Chapter 3, Managing Software Packages, takes the reader through the process of searching for, installing,
and managing packages. This will include managing APT repositories and installing packages, and
even a look at Snap packages.

Chapter 4, Navigating and Essential Commands, teaches you the essential commands needed necessary
for navigating through directory trees, viewing the contents of log files, and perusing log files.

Chapter 5, Managing Files and Directories, expands on the knowledge gained from the previous chapter
and rounds out your toolset of essential commands by going over how to edit, copy, move, and rename
files.

Chapter 6, Boosting Your Command-line Efficiency, goes over additional tips, tricks, and techniques to
enhance the reader’s usage of the command line. Topics here include managing output, investigating
Bash history, and more.

Chapter 7, Controlling and Managing Processes, teaches the reader how to manage what is running
on the server, as well as how to stop misbehaving processes. This will include having a look at htop,
systemd, and managing jobs.

Chapter 8, Monitoring System Resources, goes over how to manage valuable system resources on your
server, such as viewing disk and memory usage, as well as understanding load average and how it
impacts your CPU.

Chapter 9, Managing Storage Volumes, takes a look at storage volumes. You’ll be shown how to view
disk usage, format volumes, manage the /etc/fstab file, use LVM, and more. In addition, we’ll look
at managing swap.

Chapter 10, Connecting to Networks, takes a look at networking in Ubuntu, specifically how to connect
to resources from other nodes. We’ll look at assigning IP addresses, connecting to other nodes via
OpenSSH, and name resolution.

Preface xiii

Chapter 11, Setting Up Network Services, revisits networking with more advanced concepts. In this chapter,
the reader will learn more about the technologies that glue our network together, such as DHCP and
DNS. The reader will set up their own DHCP and DNS server, as well as installing NTP.

Chapter 12, Sharing and Transferring Files, is all about sharing files with others. Concepts will include
the setup of Samba and NFS network shares, and we will even go over transferring files manually
with rsync and scp.

Chapter 13, Managing Databases, takes the reader through the journey of setting up and managing
databases via MariaDB. The reader will learn how to install MariaDB, how to set up databases, and
how to create a secondary database server.

Chapter 14, Serving Web Content, takes a look at serving content with Apache. In addition, the reader
will be shown how to secure Apache with an SSL certificate, manage modules, and even set up a
Nextcloud server by the end of the chapter.

Chapter 15, Automating Server Configuration with Ansible, will show the reader how to set up a Git
repository for holding configuration management scripts, how to use the powerful Ansible tool to
automate common administrative tasks, and also how to use ansible-pull.

Chapter 16, Virtualization, is all about virtualization (unsurprisingly!). The reader will be walked
through setting up their very own KVM installation, as well as how to manage virtual machines with
virt-manager.

Chapter 17, Running Containers, discusses the subject of containers and shows the reader how to
manage containers in both Docker and LXD.

Chapter 18, Container Orchestration, teaches you how to take containers to the next level and manage
them with the power of Kubernetes. You’ll not only learn how to install Micro K8s, but also how to
build your very own Kubernetes cluster from scratch.

Chapter 19, Deploying Ubuntu in the Cloud, shows you how to spin up Ubuntu servers in the cloud, with
an introduction to Amazon Web Services (AWS).

Chapter 20, Automating Cloud Deployments with Terraform, goes over the process of automating the
process of building cloud infrastructure using Terraform.

Chapter 21, Securing Your Server, takes a look at various things the reader can do to strengthen security
on Ubuntu servers. Topics will include lowering the attack surface, securing OpenSSH, setting up a
firewall, and more.

Chapter 22, Troubleshooting Ubuntu Servers, consists of topics relating to things we can do when our
deployments don’t go according to plan. The reader will also investigate the problem space, view
system logs, and trace network issues.

Chapter 23, Preventing Disasters, informs the reader of various strategies that can be used to prevent
and recover from disasters. This includes a look at utilizing Git for configuration management,
implementing a backup plan, and more.

Prefacexiv

To get the most out of this book
This book is for readers who already have some experience with Linux, though it doesn’t necessarily
have to be with Ubuntu. Preferably, the reader will understand basic Linux command-line skills, such
as changing directories, listing contents, and issuing commands as regular users or with root. It’s also
preferred that the reader understands foundational networking concepts, such as the purpose of things
like DHCP, DNS, as well as IP addressing. Even if you feel as though you need a refresher, you should
read this book anyway—the opening chapters will cover many of these concepts.

In this book, we’ll take a look at real-world situations in which we can deploy Ubuntu Server. This will
include the installation process, serving web pages, setting up databases, and much more. Specifically,
the goal here is to be productive. Each chapter will teach the reader a new and valuable concept, using
practical examples that are relative to real organizations. Basically, we focus on getting things done,
rather than focusing primarily on theory. Although the theory that goes into Linux and its many
distributions is certainly interesting, the goal here is to get you to the point where if a work colleague
or client asks you to perform work on an Ubuntu-based server, you’ll be in a good position to get the
task done. Therefore, if your goal is to get up and running with Ubuntu Server and learn the concepts
that really matter, this book is definitely for you.

To follow along, you’ll either need a server on which to install Ubuntu Server, a virtual Ubuntu instance
from a cloud provider, or a laptop or desktop capable of running at least one virtual machine.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Mastering-Ubuntu-Server-Fourth-Edition

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://static.packt-cdn.com/downloads/9781803234243_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Anyway,
back to our /etc/passwd file. The fifth column is designated for user info, most commonly the user’s
first and last names.”

A block of code is set as follows:

description: External access profile
devices:
 eth0:

https://github.com/PacktPublishing/Mastering-Ubuntu-Server-Fourth-Edition
https://github.com/PacktPublishing/Mastering-Ubuntu-Server-Fourth-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803234243_ColorImages.pdf

Preface xv

 name: eth0
 nictype: bridged
 parent: br0
 type: nic

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are highlighted:

- name: Start the apache2 services
ansible.builtin.service:

 name: apache2
 state: started
 enabled: true

Any command-line input or output is written as follows:

sudo apt install docker.io

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select System info from
the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata

Prefacexvi

Share your thoughts
Once you’ve read Mastering Ubuntu Server, Fourth Edition, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

https://www.packtpub.com/
http://authors.packtpub.com

1
Deploying Ubuntu Server

Ubuntu Server is an extremely powerful distribution of Linux for servers and network appliances.
Whether you’re setting up a high-end database or a small office file server, the flexible nature of Ubuntu
Server will meet and surpass your needs. In this book, we’ll walk through all the common use cases to
help you get the most out of this exciting platform. Ubuntu Server features a perfect mix of modern
development frameworks and rock-solid stability, and its hardware support enables it to be installed
on the latest server hardware.

In this chapter, I’ll guide you through the process of deploying Ubuntu Server from start to finish.
We’ll begin with some discussion of best practices, and then we’ll obtain the software and create our
installation media. Next, I’ll give you a step-by-step rundown of the entire installation procedure. By
the end of this chapter, you’ll have an Ubuntu Server installation of your own to use throughout the
remainder of this book. In addition, since Canonical (the makers of Ubuntu) now offers official support
for Raspberry Pi, we’ll look at the process of setting that up as well.

In this chapter, we will cover:

•	 Technical requirements
•	 Determining your server’s role
•	 Choosing a device for our server
•	 Obtaining installation media
•	 Creating a bootable flash drive
•	 Installing Ubuntu Server
•	 Installing Ubuntu Server on a Raspberry Pi

To get started, we’ll first take a look at some of the technical requirements for deploying a server with
Ubuntu.

Deploying Ubuntu Server2

Technical requirements
To follow along with the examples in this book, you’ll need an Ubuntu Server installation to work with.
In general, the following specifications are the estimated minimums to successfully install Ubuntu
Server:

•	 64-bit CPU
•	 1 GB RAM
•	 10-GB hard disk (16 GB or more is recommended)

64-bit CPU support is now a requirement, with the only exception being the Raspberry Pi version. This
is because Canonical no longer makes versions of Ubuntu available for 32-bit PC and server processors.
While this may seem like a downside, all computers sold today support 64-bit operating systems, and
consumer CPUs have been 64-bit capable since at least 2003. Even if you have an older PC lying around
that you don’t think is capable of running a 64-bit operating system, you’d be surprised—even the later
models of the Pentium IV (which is quite old) support this, so this requirement shouldn’t be hard to
meet. Don’t worry about the particulars of this right now, we’ll go through the requirements in more
detail later on in this chapter.

Now that we understand the technical requirements of Ubuntu Server, let’s consider the role our
server will play in our organization.

Determining your server’s role
You’re excited to set up an Ubuntu Server installation so you can follow along with the examples
contained in this book. It is also important to understand how a typical server rollout is performed in
the real world. Every server must have a purpose, or role. This role could be that of a database server,
web server, file server, and so on. In a nutshell, the role is the value the server adds to you or your
organization. Sometimes, servers may be implemented solely for the purpose of testing experimental
code. And this is important too—having a test environment is a very common (and worthwhile) practice.

Once you understand the role your server plays within your organization, you can plan for its
implementation. Is the system mission critical? How would it affect your organization if for some
reason this server malfunctioned? Depending on the answer to this question, you may only need to
set up a single server for this task, or you may wish to plan for redundancy such that the server doesn’t
become a central point of failure. An example of this may be a DNS server, which would affect your
colleagues’ ability to resolve local hostnames and access required resources. It may make sense to
add a second DNS server to take over in the event that the primary server becomes unavailable for
some reason.

Another item to consider is how confidential the data residing on a server is going to be for your
environment. This directly relates to the installation procedure we’re about to perform, because
you will be asked whether or not you’d like to utilize encryption. The encryption that Ubuntu Server
offers during installation is known as encryption at rest, which refers to the data stored within the
internal storage volumes on that server. If your server is destined to store confidential data (accounting
information, credit card numbers, employee or client records, and so on), you may want to consider
making use of this option.

Chapter 1 3

Encrypting your hard disks is a really good idea to prevent miscreants with local access from stealing
data. As long as the attacker doesn’t have your encryption key, they cannot steal this confidential
information. However, it’s worth mentioning that anyone with physical access can easily destroy data
(encrypted or not), so remember to keep your server room locked!

At this point in the book, I’m definitely not asking you to create a detailed implementation diagram
or anything like that, but instead to keep in mind some concepts that should always be part of the
conversation when setting up a new server. It needs to have a reason to exist, it should be understood
how critical and confidential the server’s data will be, and the server should then be set up accordingly.
Once you practice these concepts as well as the installation procedure, you can make up your own
server roll-out plan to use within your organization going forward. All in all, understanding the purpose
of each component in your infrastructure is a great mindset to adopt.

At this point, we now understand how we might identify a role for our server and how it will fit into
our organization. In the next section, we’ll take a look at the process of actually installing Ubuntu
Server, so we will have at least one test machine to use for the examples in this book.

Choosing a device for our server
I bet you’re excited to set up your very own installation of Ubuntu Server and dive in. But before we
can do that, we have to decide what to actually install it on. For the purposes of this book, there isn’t
a specific requirement in terms of hardware. You just need an Ubuntu Server installation of some
sort, and it wouldn’t hurt to set up multiple servers if you can—you don’t need them all to be on the
same device type. Having multiple servers will help you experiment with networking when we get to
that point later on in the book. But for now, it’s only a matter of utilizing whatever you have at your
disposal to get an Ubuntu installation going.

In particular, the following list includes the most common devices you can consider for your Ubuntu
Server installation:

•	 Physical server
•	 Physical desktop
•	 Laptop
•	 Virtual machine
•	 Virtual private server
•	 Raspberry Pi

Let’s take a look at each of these options in more detail.

Physical server
Nowadays, it’s very easy to find used physical servers for an affordable price. Dell PowerEdge is a very
common model, and the R610 and R710 specifically are good choices that are readily available second.
These servers are commonly made available in the reseller market after companies upgrade to newer
models. The R610 and R710 are a bit old, but their specs are still great for testing purposes. If you’re
able to find a newer model (such as the R720) for a reasonable price, even better.

Deploying Ubuntu Server4

The downside with physical servers is that they take up a lot of room and can often be power-hungry
(and noisy). Make sure to shut them down when not in use and look into the cost of electric services in
your area—these servers can be very cheap to run or very expensive, depending on your electricity rates.

Physical desktop
If you don’t have access to a physical server, you might consider running Ubuntu Server on a desktop.
It’s common for some computer users to hang onto their older PC after upgrading to something new
and shiny. So rather than let your old desktop collect dust, why not put it to work? Sure, your older
computer may not run today’s high-end games, but that doesn’t matter for our purposes. Ubuntu Server
runs very well, even on older hardware. In fact, it’s quite common for home learners to use small form
factor PCs, such as the Intel NUC, for this purpose. In addition, using a physical desktop has some
advantages over physical servers as well. They often use much less power than server hardware, and
they also tend to produce less noise.

When it comes to production servers (installations of Ubuntu Server for use within your organization),
desktops are typically not a good pick. Depending on the model, actual server hardware might have
additional hardware and features that might not be present with a desktop. For example, true server
builds often feature true hardware RAID, Error Correction Code (ECC) memory, multiple processors,
and more. Although a desktop tower typically lacks those features, if you install Ubuntu Server on your
old PC it’s every bit as valid a server as an actual server chassis would be – though it wouldn’t scale well
in a data center. Since we’re just learning though, that doesn’t matter for us for our current use-case.

Laptop
Another option worth considering is to install Ubuntu Server on a laptop. If you have an older laptop
lying around that you’re no longer using, it might be a great option for learning Ubuntu Server. If you
do decide to use a laptop for this purpose, then the same factors will apply to this as I wrote regarding
using a desktop.

However, the reason I decided to give laptops their own section here is because there are some
additional benefits with these that you can take advantage of. With a real data center server rack,
you’ll typically have access to a Keyboard, Video, and Mouse (KVM). This might mean that you could
have a physical monitor, keyboard, and mouse attached to the server, or a special device with all three
built in. Servers within data centers will also have an Uninterruptible Power Supply (UPS) that will
keep them running for a time, even when your power goes out.

When it comes to a laptop, it has those same features. Laptops have a built-in keyboard, mouse, and
display. If the battery that’s installed in the laptop works, then you have a UPS as well. For those reasons,
a laptop might even have an advantage over desktops overall.

However, just like desktop computers, laptops aren’t generally acceptable for use in an actual data
center. For our use-case though, we only need one or more installations of Ubuntu Server for going
through the examples in this book. And for that purpose, dedicating any computers you’re not currently
using would be more than adequate.

Chapter 1 5

Virtual machine
If you don’t have access to a physical machine, you might consider a Virtual Machine (VM). Most
computers sold nowadays support the ability to run VMs. VirtualBox is a great solution, as it’s easy to
use and available for all of the major operating systems. Just like Ubuntu itself, VirtualBox is available
for free, so it’s typically the lowest-cost entry-point for getting started. Also, VirtualBox allows you to
easily create snapshots of your Ubuntu installation, so you can create a point-in-time backup before
going through an example in this book, and then restore it to repeat tasks as often as you’d like. The
ability to utilize snapshots alone makes a VM especially attractive for our needs.

The downside to VirtualBox is that you’ll need to be able to dedicate at least 1 GB of RAM to your
Ubuntu Server VM, and your CPU will need to support virtualization extensions, which you’ll need to
enable in your computer’s settings if your device supports it.

VirtualBox can be downloaded here: https://www.virtualbox.org.

Virtual private server
Services such as Amazon Web Services, Google Cloud, Linode, Microsoft Azure, Digital Ocean, and
others allow you to set up Ubuntu Server in the cloud for you to connect to and manage via OpenSSH.
Choosing the Virtual Private Server (VPS) option has some benefits; you don’t need to find room for
a large physical server, and you don’t need to worry about power usage either. Another benefit is that
you won’t even need to go through the installation process in this chapter at all; the cloud provider
will do that for you when you choose to deploy Ubuntu Server on their platform. The main downside,
though, is that VPS instances are not free—you’ll need to look at the costs associated with running
Ubuntu on such a server and decide if that cost makes sense. Some VPS services allow you to set up
instances for as little as $5 USD per month, which can be lower than the cost of the electricity needed
to run a physical server in some areas.

Raspberry Pi
Raspberry Pi units are quickly becoming a user favorite for server use cases. They are inexpensive
(some models are available for less than $40 USD) and they also use very minimal electricity—you can
leave them powered on 24/7 with a virtually unnoticeable difference in your power bill. In fact, they use
about as much power as it takes to charge a high-end cellphone. Another benefit is that a Raspberry Pi
is generally going to be more powerful than an entry-level VPS. The cheapest VPS instances typically
have just 1 CPU core and 1 GB of RAM, but modern Raspberry Pis are produced with quad-core CPUs,
as well as 2 GB, 4 GB, or 8 GB of RAM depending on which model you purchase. This means that a
Raspberry Pi can possibly perform better than cheaper VPS instances. The downside to Raspberry
Pi is that some applications are unavailable, since they utilize ARM CPUs instead of x86. This means
that some examples in this book will not work on a Pi (although the majority will).

Once you’ve chosen a device to install Ubuntu Server on, we can continue. If you chose to utilize a
VPS, you can move on to the next chapter, Chapter 2, Managing Users and Permissions, as you won’t
need to walk through the installation process. In the case of the Raspberry Pi, if that’s your chosen
platform, you can skip to the end of this chapter for a dedicated section about setting that up. For all
other devices, continue reading for a walk-through for the Ubuntu Server Live Installer.

https://www.virtualbox.org

Deploying Ubuntu Server6

Obtaining installation media
It’s time to get started! If you’ve decided to utilize a physical server, desktop, laptop, or VM as your test
server, then you’ll need to go through the installation process to set up Ubuntu. Don’t worry—it’s very
easy to do and it might even be easier than you’d think, as there are fewer overall steps in the process
when compared to older versions. If you’ve instead opted to use a VPS or Raspberry Pi, you won’t need
to go through this process, as VPS providers do this for you and Raspberry Pi has a different setup
method altogether (we’ll cover this later in the chapter, in the Installing Ubuntu on a Raspberry Pi section).

Assuming that you’ve decided to use a device that does require going through the installer, we’ll need
to download Ubuntu Server and then create bootable installation media to install it. How you do this
largely depends on your hardware. Does your device have an optical drive? Is it able to boot from USB?
Refer to the documentation for your device to find out.

It’s recommended to utilize a flash drive for the installation if you can, preferably one that uses USB 3.0
or higher since you’d benefit from its faster speed compared to USB 2.0. The reason for the preference
for using a flash drive is due to the fact that they are typically faster than a DVD.

However, if your device is older, you won’t have a choice, as legacy devices are not able to boot from
USB at all. As a general rule, use a flash drive if you can and opt for a DVD only if you have no choice.

In the past, Ubuntu Server ISO images could be used to create either a bootable CD or DVD. Nowadays,
writable CDs don’t have enough space to support the download size. Therefore, if you choose to burn
to bootable optical media, you’ll need a writable DVD at a minimum.

Unfortunately, the differing age of servers within a typical data center introduces some unpredictability
when it comes to how to boot installation media. When I first started with servers, it was commonplace
for all standard rack servers to contain a 3.5-inch floppy disk drive, and some of the better ones even
contained an optical drive. Nowadays, servers typically contain neither. If a server does have an optical
drive, it could potentially go unused for an extended period of time and become faulty without anyone
knowing until the next time someone goes to use it. Some servers boot from USB, others don’t. To
continue, check the documentation for your hardware and plan accordingly. Your server’s capabilities
will determine which kind of media you’ll need to create.

Regardless of whether we plan on creating a bootable USB or DVD, we only need to download a single
file. Navigate to the following site in your web browser to get started: https://www.ubuntu.com/
download/server.

From this page, we’re going to download Ubuntu 22.04 LTS by clicking on the Option 2 – Manual
server installation button:

https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server

Chapter 1 7

Figure 1.1: Ubuntu Server 22.04 download page

Next, you’ll be offered one or more versions of Ubuntu Server for download:

Figure 1.2: Revealing Ubuntu Server 22.04 download options

As of the time this chapter was being written, Ubuntu Server 22.04 is the latest version, and is shown
as the primary download option. There may be other versions of Ubuntu Server listed on this page,
such as 22.10 and 23.04, depending on when you’re reading this. New releases of Ubuntu are published
every six months. However, this book only covers the Long Term Support (LTS) release, due to the
fact that it benefits from five years of support.

By comparison, non-LTS versions (or “interim releases”) are only supported for nine months and
are therefore not an appropriate choice for production servers. Organizations don’t typically utilize
non-LTS releases at all, except for testing upcoming features prior to general availability, so for our
purposes, we’ll stick with the LTS version. Once the download is completed, we’ll end up with an ISO
image we can use to create our bootable installation media.

Deploying Ubuntu Server8

If you’re setting up a VM, then the ISO file you download from the Ubuntu downloads page will be all
you need; you won’t need to create a bootable DVD or flash drive. In that scenario, all you should need
to do is create a VM, attach the ISO to the virtual optical drive, and boot it. From there, the installer
should start, and you can proceed with the installation procedure outlined later in this chapter, in the
Installing Ubuntu Server section. Going over the process of booting an ISO image on a VM differs from
one virtualization solution to another, so detailing the process with each would be a very difficult task.
Thankfully, the process is usually straightforward and you can find the details within the documentation
of your hypervisor. In most cases, the process is as simple as attaching the downloaded ISO image to
the VM and then starting it up.

If your device does not support booting from USB and you find yourself needing to create a bootable
DVD, the process is typically just a matter of downloading the ISO file and then right-clicking on it.
In the right-click menu of your operating system, you should have an option to burn to disk or some
similar verbiage. This is true of Windows, as well as most graphical desktop environments of Linux
where a disk-burning application is installed.

The exact procedure differs from system to system, mainly because there is a vast amount of software
combinations at play here. For example, I’ve seen many Windows systems where the right-click option
to burn a DVD was removed by an installed CD/DVD-burning application. In that case, you’d have to
first open your CD/DVD-burning application and find the option to create media from a downloaded
ISO file. As much as I would love to outline the complete process here, no two Windows PCs typically
ship with the same CD/DVD-burning application. The best rule of thumb is to try right-clicking on
the file to see whether the option is there, and, if not, refer to the documentation for your application.
Keep in mind that a data disk is not what you want, so make sure to look for the option to create media
from an ISO image or your disk will be useless for our purpose.

At this point, you should have an Ubuntu Server ISO image file downloaded. If you are planning on
using a DVD to install Ubuntu, you should have that created as well. In the next section, I’ll outline
the process of creating a bootable flash drive that can be used to install Ubuntu Server.

Creating a bootable flash drive
The process of creating a bootable USB flash drive with which to install Ubuntu used to vary greatly
between platforms. The steps were very different depending on whether your workstation or laptop
was currently running Linux, Windows, or macOS. Thankfully, a much simpler method has come
about. Nowadays, I recommend the use of Etcher to create your bootable media. Etcher is fantastic
in that it abstracts the method such that it is the same regardless of which operating system you use,
and it distills the process to its most simple form.

Another feature I like is that Etcher is safe; it prevents you from destroying your current operating
system in the process of mastering your bootable media. In the past, you’d use tools like the dd command
on Linux to write an ISO file to a flash drive. However, if you set up the dd command incorrectly, you
could effectively write the ISO file over your current operating system and wipe your entire hard drive.
Etcher doesn’t let you do that.

Chapter 1 9

Before continuing, you’ll need a USB flash drive that is either empty or one you don’t mind wiping.
This process will completely erase its contents, so make sure the device doesn’t have information on
it that you might need. The flash drive should be at least 2 GB or larger. Considering it’s difficult to find
a flash drive for sale with less than 4 GB of space nowadays, this should be relatively easy to obtain.

To get started, head on over to https://www.balena.io/etcher/, download the latest version of the
application from their site, and open it up. The window will look similar to the following screenshot
once it launches:

Figure 1.3: Utilizing Etcher to create a bootable flash drive

At this point, click Flash from file, which will open up a new window that will allow you to select the
ISO file you downloaded earlier. Once you select the ISO, click on Open:

Figure 1.4: Selecting an ISO image with Etcher

https://www.balena.io/etcher/

Deploying Ubuntu Server10

If your flash drive is already inserted into the computer, Etcher should automatically detect it. In the
event that you have more than one flash drive attached, or Etcher selects the wrong one, you can click
Change and select the flash drive you wish to use:

Figure 1.5: Selecting a different flash drive with Etcher

Finally, click Continue to get the process started. At this point, the flash drive will be converted into
Ubuntu Server installation media that can then be used to start the installation process:

Figure 1.6: Etcher in the process of writing a flash drive

Chapter 1 11

After a few minutes (the length of time varies depending on your hardware), the Flashing process
will complete, and you’ll be able to continue and get some installations going. Before we get into that,
though, we should have a quick discussion regarding partitioning.

Planning the partitioning layout
Partitioning your disk allows you to divide up your hard disk to dedicate specific storage allocations
to individual applications or purposes. For example, you can dedicate a partition for the files that are
shared by your Apache web server so changes to other partitions won’t affect it. You can even dedicate
a partition for your network file shares—the possibilities are endless. Each partition is mounted
(attached) to a specific directory, and any files sent to that directory are thereby sent to that separate
partition. The names you create for the directories where your partitions are mounted are arbitrary;
it really doesn’t matter what you call them. The flexible nature of storage on Linux systems allows
you to be creative with your partitioning as well as your directory naming, since the Linux filesystem
gives you more flexibility when it comes to mounting storage devices in specific folders.

Admittedly, we’re getting ahead of ourselves here. After all, we’re only just getting started and the point
of this chapter is to help you set up a basic Ubuntu Server installation to serve as the foundation for
the rest of the chapter. When going through the installation process, we’ll accept the defaults anyway.
However, the goal of this section is to give you examples of the options you have for consideration later.
At some point, you may want to get creative and play around with the partition layout.

With custom partitioning, you’re able to do some very clever things. For example, with the right
configuration, you’ll be able to wipe and reload your distribution while preserving user data, logs,
and more. This works because Ubuntu Server allows you to carve up your storage any way you want
during installation. If you already have a partition with data on it, you can choose to leave it as is so
you can carry it forward into a new install. You simply set the directory path where it’s mounted to
be the same as before, restore your configuration files, and your applications will continue working
as if nothing happened.

One very common example of custom partitioning in the real world is separating the /home directory
into its own partition. Since this is where users typically store their files, you can set up your server
such that a reload of the distribution won’t disturb their files. When they log in after a server refresh,
all their files will be right where they left them. You could even place the files shared by your Apache
web server on to their own partition and preserve those too. You can get very creative here.

It probably goes without saying, but when reinstalling Ubuntu, you should back up partitions that
have data you don’t want to be wiped (even if you don’t plan on formatting the partitions). The reason
being, one wrong move (literally a single checkbox) and you can easily wipe out all the data on that
partition. Always back up your data when refreshing a server.

Another reason to utilize separate partitions may be to simply create boundaries or restrictions. If
you have an application running on your server that is prone to filling up large amounts of storage,
you can point that application to its own partition, limited by size. An example of where this could
be useful is an application’s log files. Log files are the bane of any system administrator’s life when it
comes to storage.

Deploying Ubuntu Server12

While helpful if you’re trying to figure out why something crashed, logs can fill up a hard disk very
quickly if you’re not careful. In my experience, servers have been known to come to a screeching
halt due to log files filling up all the available free space on a server where everything was on a single
partition. The only boundary the application had was the entirety of the disk itself.

While there are certainly better ways of handling excessive logging (log rotating, disk quotas, and
so on), a separate partition would certainly help. If the application’s log directory was on its own
partition, it would be able to fill up that partition, but not the entire drive, which would cause issues
but wouldn’t affect the entire server. As an administrator, it’s up to you to weigh the pros and the cons
of these strategies to avoid server overload and develop a partitioning scheme that will best serve the
needs of your organization.

Success when maintaining a server is a matter of efficiently managing resources, users, and security—a
good partitioning scheme is certainly part of that. Sometimes it’s just a matter of making things easier
on yourself so that you have less work to do should you need to reload your operating system. For the
sake of following along with this book, it really doesn’t matter how you install or partition Ubuntu
Server. The trick is simply to get it installed—you can always practice partitioning later. After all, part
of learning is setting up a platform, observing any issues that may occur, and then fixing it up.

Here are some basic tips regarding partitioning:

•	 At a minimum, a partition for the root filesystem (designated by a forward slash) is required.
•	 The /var directory contains most log files and is therefore a good candidate for separation for

the reasons mentioned previously in this section.
•	 The /home directory stores all user files. Separating this into a separate partition can be

beneficial as it gives you the possibility of having your user files survive a reinstall of Ubuntu.
•	 If you’ve used Linux before, you may be familiar with the concept of a swap partition, which

is a special partition that can act as RAM when your memory becomes full. This is no longer
necessary—a swap file will be created automatically in newer Ubuntu releases.

When we perform our installation in the next section, we’ll choose the defaults for the partitioning
scheme to get you started quickly. However, I recommend you come back to the installation process
at some point in the future and experiment with it. You may come up with some clever ways to split
up your storage. However, you don’t have to—having everything in one partition is fine too, depending
on your needs.

Now that we have an understanding of what partitioning is, we should have all of the essential topics
covered to enable us to actually get the installation of Ubuntu Server going. Let’s go ahead and work
on that now.

Installing Ubuntu Server
At this point, we should be ready to get an installation of Ubuntu Server going. In the steps that follow,
I’ll walk you through the process.

Chapter 1 13

To get started, all you should need to do is insert the installation media into your server or device and
follow the onscreen instructions to open the boot menu. The key you press at the beginning of the
POST process differs from one machine to another, but it’s quite often F10, F11, or F12. Refer to your
documentation if you are unsure, though most computers and servers tell you which key to press at
the beginning. You may miss this window of opportunity the first few times, and that’s fine—to this
day I still seem to need to restart the machine once or twice to hit the key in time.

Once you successfully boot your device while using your Ubuntu Server installation media, navigating
the installer is relatively straightforward. You simply use the arrow keys to move up and down to select
different options, and press Enter to confirm choices. The Esc key will allow you to exit from a sub-
menu. Moving around within the installer is pretty easy once you get the hang of it.

Once the installer starts, you’ll see the first of many selection screens. The first option, Ubuntu Server,
allows you to start the Ubuntu Server installer. The second option, Test memory, runs a special program
that helps you determine if you have any physical defects with the RAM modules installed inside your
device. I always recommend testing the memory of your device once per year at least, and especially
before you install an operating system for the first time. Memory issues can be rare, but you’d be
surprised. It might be a good idea to test your memory just to be safe.

If you wish to test the memory of your device, you can go ahead and do so. In order to move on though,
we’ll need to choose the Ubuntu Server option in order to start the installer:

Figure 1.7: The initial boot screen for the Ubuntu Server installation media

Deploying Ubuntu Server14

Next, you’ll see a screen allowing you to select your language as in the following screenshot:

Figure 1.8: Language selection at the beginning of the installation process

If your language is anything other than English, you’ll be able to select that here. Once you’re satisfied
with the chosen keyboard layout, you continue by selecting Done at the bottom of the screen.

After choosing your language, you’ll be brought to a screen that enables you to set your Keyboard
configuration. If the proper keyboard layout wasn’t automatically selected, you can change it here.

Figure 1.9: Setting the layout of your keyboard

Chapter 1 15

Next, we’ll see an option to install Ubuntu Server, or Ubuntu Server (minimized). For this, we’ll choose
the first option. Choosing to install a minimized version of Ubuntu Server might be a good fit for creating
smaller installations, however for this book, we’re going to focus on the normal installation type.

Figure 1.10: Choosing your installation type

Next, the Ubuntu Server installer will attempt to automatically detect the appropriate parameters for
your network card. By default, it should detect the appropriate settings via Dynamic Host Control
Protocol (DHCP). We’ll go over DHCP in a future chapter, specifically Chapter 11, Setting Up Network
Services. For now, the defaults should be fine. Select Done to continue.

Figure 1.11: Network configuration within the Ubuntu Server installer

Deploying Ubuntu Server16

Continuing, the next screen will give us an opportunity to set a proxy address if we need one. Most
readers shouldn’t need this, and those that do might’ve been provided particular proxy settings from
a network administrator. So for us, we’ll select Done to continue:

Figure 1.12: Proxy settings within the Ubuntu Server installer

On the next screen that appears, we’ll see an option to set a mirror address for our installation. As
we’ll discuss further in Chapter 3, Managing Software Packages, this pertains to an online source from
which installable applications (packages) can be downloaded. In some cases, an organization might
host its own repository for available software.

Chapter 1 17

Therefore, on this screen, you can choose a different server to provide software if you have your own.
For our needs, we’ll select Done to accept the default and continue:

Figure 1.13: Mirror settings within the Ubuntu Server installer

Next, we’ll see settings for storage. In particular, this is where we can configure the hard disk layout
for our installation. Earlier in this chapter, I mentioned that it’s common practice to adopt a custom
partitioning scheme. If you have a preferred partition layout, this is the screen where you would input
those decisions by selecting Custom storage layout.

Deploying Ubuntu Server18

However, doing so would be jumping ahead of the book a bit, so instead I recommend selecting Done
to accept the default, which will take over the entire hard disk:

Figure 1.14: Configuring storage while installing Ubuntu Server

Chapter 1 19

After we inform the installer how to set up the storage device on our server, we’ll next see a screen
that summarizes our selections while configuring storage. Since we chose the default layout, we’ll see
a basic layout presented on this screen. If you did decide to set up a customized partitioning scheme,
you’d want to ensure that the selections shown here match what you had in mind. If you’re confused as
to what any of this means, don’t worry too much about it for now. We’ll cover more details surrounding
storage in Chapter 9, Managing Storage Volumes. For now, select Done to accept the default storage layout:

Figure 1.15: Storage configuration summary screen while installing Ubuntu Server

Deploying Ubuntu Server20

If you didn’t already know, this process will erase everything on the hard disk of your device, and
replace it with your new Ubuntu Server installation. This means that if you haven’t backed up any
important data that might be saved on your device, you will lose that information forever. The screen
that comes up next will explain that this is the last step before your disk is wiped and Ubuntu Server is
installed. If you’re certain that your disk doesn’t have any important data on it, you can select Continue:

Figure 1.16: Confirming the installation and wiping of the hard disk

When we install Ubuntu Server, it will create an initial user account for us as part of the process. This
user will be used for configuring and maintaining the server after installation. In this section of the
installer, we’ll be given an opportunity to name this user and create a password.

Fill out your information on this screen, as I have in the following screenshot. One important thing to
keep in mind is that the user you create here will have administrative access. You can always create
other users later on, but the user you create here will have special privileges. When finished, arrow
down to Done and press Enter:

Chapter 1 21

Figure 1.17: Ubuntu Server installer, configuring user details

Deploying Ubuntu Server22

Next, you’ll see an Install OpenSSH server option. I recommend that you enable this. OpenSSH is the
closest thing to a default we have when it comes remotely managing Ubuntu servers, and is discussed
in more detail in Chapter 10, Connecting to Networks. For now, let’s enable this option as it will be one
less thing for us to do later. To do so, you can press the spacebar while the cursor is on the option to
add an asterisk symbol into its checkbox, which signifies a selection. After you do that, select Done
to continue:

Figure 1.18: Choosing whether or not to set up OpenSSH while installing Ubuntu Server

Chapter 1 23

Next, we’ll see a selection of some of the more common applications that can be run on Ubuntu Server.
For example, we have selections for Nextcloud, Docker, and more on this screen. For now, we’ll ignore
these since we’ll be going through the process of manually setting up many services throughout the
book. So for now, select Done to continue:

Figure 1.19: Featured application selection

Deploying Ubuntu Server24

That’s pretty much it—the installer will continue along on its own, as it has all the information it
needs from you at this point. Once it’s done, you’ll see a Reboot option at the bottom of the screen;
go ahead and select that:

Figure 1.20: Completed installation, pending reboot

At this point, your server will reboot and then Ubuntu Server should start right up. Congratulations!
You now have your own Ubuntu Server installation!

In addition to server-specific hardware and virtual machines, Ubuntu Server can also be installed on
a Raspberry Pi, and that’s exactly what we’ll take a look at in the next section.

Chapter 1 25

Installing Ubuntu on a Raspberry Pi
The Raspberry Pi platform has become quite a valuable asset in the industry, and a useful server
platform. These tiny computers, now with four cores and up to 8 GB of RAM, are extremely power
efficient and their performance is good enough that you can actually transform them into actual
servers. In my lab, I have several Raspberry Pis on my network, each one responsible for performing
specific tasks or functions. In many cases, you wouldn’t even tell that they were devices with lower-
powered hardware. Perhaps even more surprising is the fact that the Raspberry Pi 4 can outperform
some lower-tier cloud instances, giving you a powerful server without the monthly cost if you don’t
need a high-end CPU. All this, in such a small form factor—these devices are smaller than the coaster
under your coffee mug!

Ubuntu Server is available for Raspberry Pi models 2, 3, and 4. To get started, all you’ll need to do is
visit the official download page for the Raspberry Pi version of Ubuntu, here: https://ubuntu.com/
download/raspberry-pi. This will take you to the following screen:

Figure 1.21: The download section for Raspberry Pi on the official Ubuntu website

Once there, you’ll see a listing of multiple versions for the Pi that are available for download. Refer to
the preceding screenshot for an example of options that are available, but keep in mind that Ubuntu
may redesign their web page at any time. So as a rule of thumb, download the version that matches
the type of Raspberry Pi you have, and go with the 64-bit version if it’s available (the Raspberry Pi 2
only has a 32-bit option available).

https://ubuntu.com/download/raspberry-pi
https://ubuntu.com/download/raspberry-pi

Deploying Ubuntu Server26

The download for the Pi versions will come in the form of a compressed image, which can be written
directly to an SD card. To get the process going, open up Etcher, which we downloaded in an earlier
step. Once Etcher is open, click Flash from file:

Figure 1.22: Etcher, ready for action

Now, choose the file that was downloaded earlier and select Open:

Figure 1.23: Selecting the file to use to write to the SD card

Next, go ahead and insert an SD card into your computer that will become dedicated to Ubuntu Server.
Etcher will completely erase the SD card, so make sure you don’t need any of the data that may be on
it. If your computer does not have an SD card slot, you can use a USB card reader. If the proper device
isn’t selected, you can click Select target to choose the SD card to use, as shown in Figure 1.24. Then
click Continue:

Chapter 1 27

Figure 1.24: Choosing an SD card to use with Etcher for the Raspberry Pi

Once you’ve selected both the image file to use and the target SD card, you’re ready to proceed. Click
Flash! to begin the process of writing the image:

Figure 1.25: Etcher, ready to start flashing the SD card

Deploying Ubuntu Server28

Now, Etcher will prepare the target with the source image file. The process can take anywhere from
5 to 15 minutes depending on the speed of your hardware:

Figure 1.26: Etcher in progress

Once Etcher is finished writing to the SD card, you can eject it from your computer and insert it into
the Pi, which can be accessed remotely via SSH. When it finishes booting for the first time, you can log
in and begin using it as you would any other Ubuntu Server installation (the username and password
both default to ubuntu). From there, you can create a new user for yourself, install applications, and
experiment.

Summary
In this chapter, we covered a couple of different installation scenarios in great detail. As with most
Linux distributions, Ubuntu Server is scalable and able to be installed on a variety of server types.
Physical devices, VMs, and even the Raspberry Pi have versions of Ubuntu available. The process of
installation was covered step by step, and you should now have an Ubuntu Server instance of your
own to configure as you wish. Also in this chapter, we covered determining the role of your server, the
process of creating bootable media, and a walkthrough of setting up Ubuntu Server on your server
device (as well as on a Raspberry Pi). You’re now on your way to Ubuntu Server mastery!

In the next chapter, we’ll show you how to manage users. You’ll be able to create them, delete them,
change them, manage password expiration, and more. We will also cover permissions so that you can
determine what your users are allowed to do on your server. See you there!

Chapter 1 29

Relevant tutorials
•	 Install Ubuntu Server (Video Tutorial) from LearnLinuxTV:

https://linux.video/install-ubuntu-server

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/install-ubuntu-server
https://packt.link/LWaZ0

2
Managing Users and Permissions

In the previous chapter, we set up our very own Ubuntu Server installation, and we can now learn
how to maintain it, starting with a look at managing who is able to use our server.

As administrators of Ubuntu servers, users can be your greatest asset and also your biggest headache.
During your career, you’ll add countless new users, manage their passwords, remove their accounts
when they leave the company, and grant or remove access to resources across the network. Even on
servers on which you’re the only user, you’ll still find yourself managing user accounts, since even
system processes run as users. To be successful at managing Linux servers, you’ll also need to know
how to manage permissions, create password policies, and limit who can execute administrative
commands on the machine. In this chapter, we’ll work through these concepts so that you have a clear
idea of how to manage users and their resources.

In particular, we will cover:

•	 Understanding the purpose of users and groups
•	 Understanding when to use root
•	 Creating and removing users
•	 Understanding the /etc/passwd and /etc/shadow files
•	 Distributing default configuration files with /etc/skel
•	 Switching between users
•	 Managing groups
•	 Managing passwords and password policies
•	 Configuring administrator access with sudo
•	 Setting permissions on files and directories

In the first section, we will have a quick discussion about the nature of managing users.

Managing Users and Permissions32

Understanding the purpose of users and groups
When it comes to a server, users are very important—without users to serve, then there’s no real
need for a server in the first place. The subject of user management itself within the world of IT is in
and of itself quite vast. Entire books have been written on individual methods of authentication, and
entire technologies (such as Lightweight Directory Access Protocol, or LDAP) exist around it. In this
chapter, we’ll look at managing users that exist locally on our server, and the groups that help define
what they are able to do.

Since Ubuntu Server is a distribution of Linux, it adopts the Unix style of managing user accounts,
groups, and permissions. Although our focus is on Ubuntu, many of the same commands around
user management that you’ll learn in this chapter will apply to other platforms as well. There are
commands that allow you to add, remove, and change users, as well as commands that allow you to
alter permissions.

Users in the context of a server refer to who (or what) is able to use the server. For example, you may
have an accountant named Susan, or an IT administrator named Haneef, who both need to access
the server. Perhaps Susan only needs access to a file share directory for accounting-related files, and
Haneef might have more access to the server as a system administrator. The user accounts we create
on our server will represent the actual people that will use it.

Groups allow us to segregate access to specific files and directories. As we’ll learn later, files and
directories have user and group assignments. When combined with permissions, we’ll be able to
manage what our users are able to do with our server.

Users aren’t always people, though. We also have system users on our server that applications and
running processes might use for background or automated tasks. An example of this might be a backup
job, and you may have a backup user that runs a task in the background to facilitate some sort of file
copy task that copies important files to another place. You don’t have to worry about system-related
users for now, just know that they exist. You’ll see more examples of this as we go through the book.

More advanced organizations may have a central login server, such as Active Directory (AD) or standard
LDAP. There are others aside from those, as well. In this book, we won’t cover those technologies, but
just keep in mind that central authentication servers are a possibility for your organization, should
you choose to explore them.

The most powerful user of all, though, is root. This special user gives us the most control, but as you’ll
see in the next section, that comes with risks.

Understanding when to use root
In the last chapter, we set up our very own Ubuntu Server installation. During the installation process,
we were instructed to create a user account to act as a system administrator. So, at this point, we
should have at least two users on our server. We have the aforementioned administrative user, as well
as root. We can certainly create additional user accounts with varying levels of access (and we will do
so in this chapter), but before we get to that, some discussion is in order regarding the administrator
account you created, as well as the root user that was created for you.

Chapter 2 33

The root user account exists on all Linux distributions and is the most powerful user account on the
planet. The root user account can be used to do anything within your server, and I do mean anything.
Want to create files and directories virtually anywhere on the filesystem? Want to install software?
These processes are easily performed with root. The root account can even be used to destroy your
entire installation with one typo or ill-conceived command: if you instruct root to delete all the files
on your entire hard disk, it won’t hesitate to do so. It’s always assumed on a Linux system that if you
are using root, you are doing so because you know what you are doing. So, there’s often not so much
as a confirmation prompt while executing any command as root. It will simply do as instructed, for
better or worse.

It’s for this reason that every Linux distribution I’ve ever used has stated, or at least highly recommended,
that you create a standard user during the installation process. It’s generally recommended in the
Linux community for an administrator to have their own account and then switch to root whenever
a task comes up that requires root privileges to complete. This approach is less likely to destroy your
server with an accidental typo or bad command. Some administrators will strictly use root at all times
without any issue, but again, it’s recommended to use root only when you have to.

Most distributions ask you to create a root password during installation in order to protect that account.
Even Debian (on which Ubuntu is based) has you set a root password during installation. Ubuntu just
decides to do things a little bit differently. The reason for this is that, unlike many other distributions,
Ubuntu defaults to locking out the root account altogether. There’s nothing stopping you from enabling
root, or switching to the root user after you log in. Being disabled by default just means the root
account isn’t as easily accessible as it normally would be. I’ll cover how to enable this account later
in this chapter, should you feel the need to do so.

An exception to this rule is that some VPS providers, such as Linode, will enable the root account even
on their Ubuntu servers. Sometimes, the root password will be randomly generated and emailed to
you. However, you should still create a user for yourself with administrative access regardless.

Instead of using root outright, Ubuntu (as well as its server version) recommends the use of sudo.
Specifically, sudo enables you to run individual commands with elevated privileges instead of being
logged in as root all the time.

Using sudo to run privileged commands
I’ll go over how to manage sudo later on in this chapter, but for now, just keep in mind that the purpose
of sudo is to enable you to use your user account to do things that normally only root would be able
to do. For example, as a normal user, you cannot issue a command such as the following to install
a software package (don’t worry about the apt command for now, as we’ll cover that in Chapter 3,
Managing Software Packages):

apt install tmux

Instead, you’ll receive an error:

E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission
denied)

Managing Users and Permissions34

E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are
you root?

But if you prefix the command with sudo (assuming your user account has access to it), the command
will work just fine:

sudo apt install tmux

When you use sudo, you’ll be asked for your user’s password for confirmation, and then the command
will execute. Subsequent commands prefixed with sudo may not prompt for your password, as it will
cache your password for a short period of time until it times out or the terminal is closed. Understanding
this should clarify the usefulness of the user account you created during installation. I referred to this
user as an administrative account earlier, but it’s really just a user account that is able to utilize sudo.
Ubuntu Server automatically gives the first user account you create during installation access to sudo.

The intent is that you’ll use that account to administer the system, rather than root. When you create
additional user accounts, they will not have access to sudo by default, unless you explicitly grant it
to them.

Creating and removing users
Creating users in Ubuntu can be done with one of two commands: adduser and useradd. This can be
a little confusing at first, because both of these commands do the same thing (in different ways) and
are named very similarly. I’ll go over the useradd command first and then I’ll explain how adduser
differs. You may even prefer the latter, but we’ll get to that in a moment.

Using useradd
First, here’s an example of the useradd command in action:

sudo useradd -d /home/jdoe -m jdoe

With this command, I created a user named jdoe. With the -d option, I’m clarifying that I would like
a home directory created for this user, and following that, I called out /home/jdoe as the user’s home
directory. The -m flag tells the system that I would like the home directory to be created during the
process; otherwise, I would’ve had to create the directory myself. Finally, I called out the username
for my new user (in this case, jdoe).

As we go along in this book, there will be commands that require root privileges in order to execute.
The preceding command was an example of this. For commands that require such permissions, I’ll
prefix the commands with sudo. When you see these, it just means that root privileges are required
to run the command. For these, you can also log in as root (if root is enabled) or switch to root to
execute these commands as well. However, as I mentioned before, using sudo instead of using the
root account is strongly encouraged.

Chapter 2 35

Now, list the storage of /home using the following command:

ls -l /home

You should see a folder listed there for our new user:

Figure 2.1: Listing the contents of /home after our first user was created

What about creating our user’s password? We may have been asked for our current user’s password
due to using sudo, but we weren’t asked for a password for the new user. To create a password for the
user, we can use the passwd command. The passwd command defaults to allowing you to change the
password for the user you’re currently logged in as, but it also allows you to set a password for any
other user if you run it as root or with sudo. If you enter passwd by itself, the command will first ask
you for your current password, then your new password, and then it will ask you to confirm your new
password again. If you prefix the command with sudo and then specify a different user account, you
can set the password for any user you wish. An example of the output of this process is as follows:

Figure 2.2: Changing the password of a user

As you can see in the previous screenshot, you won’t see any asterisks or any kind of output when
you type a password using the passwd command. This is normal. Although you won’t see any visual
indication of input, your input is being recognized.

Now we have a new user and we were able to set a password for that user. The jdoe user will now
be able to access the system with the password we’ve chosen. This user won’t have access to sudo by
default, but we’ll cover how to change this later on in the chapter.

Managing Users and Permissions36

Using adduser
Earlier, I mentioned the adduser command as another way of creating a user. The difference (and
convenience) of this command should become apparent immediately once you’ve used it. Go ahead
and give it a try; execute adduser along with a username for a user you wish to create. An example
run of this process is as follows:

Figure 2.3: Creating a user with the adduser command

In the preceding process, I executed sudo adduser dscully (commands that modify users require
sudo or root) and then I was asked a series of questions regarding how I wanted the user to be created.
I was asked for the password (twice), Full Name, Room Number, Work Phone, and Home Phone. In the
Other field, I entered the comment Trust no one, which is a great mindset to adopt while managing
users. The latter prompts prior to the final confirmation were all optional: I didn’t have to enter Full
Name, Room Number, and so on. I could’ve pressed Enter to skip those prompts if I wanted to. The only
things that are really required are the username and the password.

From the output, we can see that the adduser command performed quite a bit of work for us. The
command defaulted to using /home/dscully as the home directory for the user, the account was given
the next available User ID (UID) and Group ID (GID) of 1002, and it also copied files from /etc/skel
into our new user’s home directory. In fact, both the adduser and useradd commands copy files from
/etc/skel, but adduser is more verbose regarding the actions it performs.

Don’t worry if you don’t understand what UID, GID, and /etc/skel are yet. We’ll work through those
concepts soon.

Chapter 2 37

In a nutshell, the adduser command is much more convenient in the sense that it prompts you for
various options while it creates the user without requiring that you memorize command-line options.
It also gives you detailed information about what it has done. At this point, you may be wondering why
someone would want to use useradd at all, considering how much more convenient adduser seems to
be. Unfortunately, adduser is not available on all distributions of Linux. It’s best to familiarize yourself
with useradd in case you find yourself on a Linux system that’s not Ubuntu.

It may be interesting for you to see what exactly the adduser command is. It’s not even a binary
program—it’s a shell script. A shell script is simply a text file that can be executed as a program.
You don’t have to worry too much about scripting now, as we will cover it in Chapter 6, Boosting Your
Command-line Efficiency. In the case of adduser, it’s a script written in Perl, which is a programming
language that is sometimes used for administrative tasks. Since it’s not binary, you can even open it
in a text editor in order to view all the code that it executes behind the scenes. However, make sure
you don’t open the file in a text editor with root privileges, to ensure that you don’t accidentally save
changes to the file and break the script. The following command will open adduser in a text editor
on an Ubuntu Server system:

nano /usr/sbin/adduser

Use your up/down arrows as well as the Page Up and Page Down keys to scroll through the file. When
you’re finished, press Ctrl + x on your keyboard to exit the text editor. If the editor prompts you to save
changes, don’t do so. Anyway, those of you with keen eyes will likely notice that the adduser script
is calling useradd to perform its actual work. So either way, you’re either directly or indirectly using
useradd.

Now that we know how to create users, it will be useful to understand how to remove them as well.

Removing users
Removing or disabling an account is very important when a user no longer needs to access a system,
as unmanaged accounts often become a security risk. To remove a user account, we’ll use the userdel
command.

Before removing an account, though, there is one very important question you should ask yourself.
Will you (or another person) need access to the user’s files? Most companies have retention policies
in place that detail what should happen to a user’s data when they leave the organization. Sometimes,
these files are copied into an archive for long-term storage. Often, a manager, coworker, or new hire
will need access to the former user’s files, perhaps to continue working on a project where they left off.
It’s important to understand this policy ahead of managing users. If you don’t have a policy in place
that outlines retention requirements for files when users resign, you should probably work with your
management team and create one.

By default, the userdel command does not remove the contents of the user’s home directory. Here, we
use the following command to remove dscully from the system:

sudo userdel dscully

Managing Users and Permissions38

We can see that the files for the dscully user still exist by entering the following command:

ls -l /home

The preceding commands will result in the following outputs:

Figure 2.4: The home directory for the user dscully still exists, even though we removed the user

With the /home directory for dscully still existing, we’re able to move the contents of this directory
anywhere we would like to. If we had a directory called /store/file_archive, for example, we could
easily move the files there:

sudo mv /home/dscully /store/file_archive

Of course, it’s up to you to create the directory where your long-term storage will ultimately be, but
you get the idea.

If you weren’t already aware, you can create a new directory with the mkdir command. You can create
a directory within any other directory that your logged-in user has access to. The following command
will create the file_archive directory I mentioned in the preceding example:

sudo mkdir -p /store/file_archive

The -p flag simply creates the parent directory if it didn’t already exist.

If you do actually want to remove a user’s home directory at the same time that you remove an account,
just add the -r option. This will eliminate the user and their data in one shot:

sudo userdel -r dscully

To remove the /home directory for the user after the account was already removed (if you didn’t use the
-r parameter the first time), use the rm -r command to get rid of it, as you would any other directory:

sudo rm -r /home/dscully

It probably goes without saying, but the rm command can be extremely dangerous. If you’re logged
in as root or using sudo while using rm, you can easily destroy your entire installed system if you’re
not careful. DO NOT run this command, but as a hypothetical example, the following command (while
seemingly innocent at first glance) will likely completely destroy your entire filesystem:

sudo rm -r / home/dscully

Chapter 2 39

Notice the typo: I accidentally typed a space after the first forward slash. I literally accidentally told
my system to remove the contents of the entire filesystem. If that command were executed, the server
probably wouldn’t even boot the next time we attempted to start it. All user and program data would
be wiped out. If there was ever any single reason for us to be protective over the root account, the rm
command is most certainly it!

At this point, we understand how to add and remove users. In the next section, we’ll look deeper into
passwords.

Understanding the /etc/passwd and /etc/shadow files
Now that we know how to create (and delete) user accounts on our server, we are well on our way to
being able to manage our users. But where exactly is this information stored? We know that users store
their personal files in /home, but is there some kind of database somewhere that keeps track of which
user accounts are on our system? Actually, user account information is stored in two special text files:

•	 /etc/passwd

•	 /etc/shadow

You can display the contents of each of those two files with the following commands. Note that any
user can look at the contents of /etc/passwd, while only root has access to /etc/shadow:

cat /etc/passwd
sudo cat /etc/shadow

Go ahead and take a look at these two files (just don’t make any changes), and I will help you understand
them.

Understanding the /etc/passwd file
First, let’s go over the /etc/passwd file. What follows is some example output from this file on my test
server. For brevity, I have limited the output to the last eight lines:

Figure 2.5: Example /etc/passwd file

Each line within this file corresponds to a user account on the system. Entries are split into columns,
separated by a colon (:). The username is in the first column, so you can see that I’ve created users
jay and jdoe. The next column on each is simply an x. I’ll go over what that means a bit later. For now,
let’s skip to the third and fourth columns, which reference the UID and GID respectively.

Managing Users and Permissions40

On a Linux system, user accounts and groups are actually referenced by their IDs. While it’s easier
for you and I to manage users by their names, usernames and group names are nothing more than a
label placed on the UID and GID in order to help us identify them more easily.

For example, it may be frustrating to try to remember that jdoe is UID 1001 on our server each
time we want to manage this account. Managing it by referring to the account as jdoe is easier for
humans, since we don’t remember numbers as well as we do names. But to Linux, each time we
reference user jdoe, we’re actually just referencing UID 1001. When a user is created, the system (by
default) automatically assigns the next available UID to the account. If you manage multiple Ubuntu
servers, note that the UIDs will not match from one system to another, so keep in mind that UIDs don’t
synchronize between installations.

In my case (as shown in Figure 2.5), the UID of each user is the same as their GID. This is just a
coincidence on my system and it isn’t always that way in practice. While I’ll discuss creating groups
later in this chapter, understand that creating groups works in a similar way to creating users, in the
sense that the group is assigned the next available GID in much the same way as new user accounts
are assigned the next available UID. When you create a user, the user’s primary group is the same as
their username (unless you request otherwise). For example, when I created jdoe, the system also
automatically created a jdoe group as well.

This is what you’re actually seeing here—the UID for the user, as well as the GID for the user’s primary
group. Again, we’ll get to groups in more detail later.

You probably also noticed that the /etc/passwd file on your system contains entries for many more
users than the ones we’ve created ourselves. This is perfectly normal, as Linux uses user accounts
for various processes and services that run in the background. You’ll likely never interact with the
default accounts at all, though you may someday create your own system user for a process to run as.
For example, perhaps you’ll create a data processor account for an automated data-processing script
to run under.

Anyway, back to our /etc/passwd file. The fifth column is designated for user info, most commonly the
user’s first and last names. In my example, the fifth field is blank for jdoe, as I created jdoe with the
useradd command, which didn’t prompt me for the first and last names. This field is also nicknamed
the GECOS field, and you may see it referred to as such when you read the documentation.

In the sixth column, the home directory for each user is shown. In the case of jdoe, it’s set as /home/
jdoe. Finally, we designate the user’s shell as /bin/bash. This field refers to the default shell the user
will use, which defaults to /bin/bash when an account is created with the adduser command, and /
bin/sh when created with the useradd command. (If you have no preference, /bin/bash is the best
choice for most.) If we want the user to use a different shell, we can clarify that here (though shells
other than /bin/bash aren’t covered in this book). If we wanted, we could change the user’s shell
to something invalid to prevent them from logging in at all. This is useful for when a security issue
requires us to disable an account quickly.

Chapter 2 41

Understanding the /etc/shadow file
With that out of the way, let’s take a look at the /etc/shadow file. We can use cat to display the contents
like any other text file, but unlike /etc/passwd, we need root privileges in order to view it. So, go
ahead and display the contents of this file, and I’ll walk you through it:

sudo cat /etc/shadow

This will display the following output:

Figure 2.6: Example /etc/shadow file

The preceding screenshot, Figure 2.6, shows the last four lines of this file on my server. First, we have
the username in the first column—no surprises there. Note that the output is not showing the UID
for each user in this file. The system knows which username matches which UID based on the /etc/
passwd file, so there’s no need to repeat that here. In the second column, we have what appears to be
gobbledygook. Actually, that’s the most important part of this entire file. That’s the actual hash for
the user’s password.

A password hash is a conversion of the actual password to a different string that represents the original
password. This is a one-way conversion, so you cannot find the actual password by reverse-engineering
the hash. In the /etc/passwd file, the hash of the password is stored rather than the actual password,
for security purposes.

If you recall, in the /etc/passwd file, each user listing had an x for the second column, and I mentioned
I would explain that later. What the x refers to is the fact that the user’s password is encrypted and
simply not stored in /etc/passwd and is instead stored in /etc/shadow. After all, the /etc/passwd
file is viewable by everyone, so it would compromise security quite a bit if anyone could just open up
the file and see what everyone’s passwords were.

In the days of old, you could actually store a user’s password in /etc/passwd, but it’s never done that
way anymore. Whenever you create a user account on a modern Linux system, the user’s password is
encrypted (an x is placed in the second column of /etc/passwd for the user), and the actual password
hash is stored in the second column of /etc/shadow to keep it away from prying eyes. Hopefully, now
the relationship between these two files has become apparent.

Remember earlier I mentioned that the root user account is locked out by default? Well, let’s actually
see that in action. Execute the following command to see the root user account entry in /etc/shadow:

sudo cat /etc/shadow | grep root

Managing Users and Permissions42

On my system, I get the following output:

Figure 2.7: Example /etc/shadow file

You should notice right away that the root user account doesn’t have a password hash at all. Instead,
there’s an asterisk where the password hash would’ve been. In practice, placing an asterisk or
exclamation point here is one way to lock an account. Even easier, you can use the passwd -l command
against an account to lock it without having to edit a file. But either way, we can still switch to the
root account anytime (which I’ll show you how to do later on in this chapter). Entering an asterisk or
exclamation mark in the second field creates the restriction that we can’t directly log in as that user
from the shell or over the network. We have to log in to the system as a normal user account first, and
then we can still switch to that user if we want to.

With the discussion of password hashes out of the way, there are a few more fields within /etc/shadow
entries that we should probably understand. Here’s a contrived example line:

mulder:6TPxx8Z.:16809:0:99999:7:::

Continuing on with the third column, we can see the number of days since the Unix epoch that the
password was last changed. For those that don’t know, the Unix epoch is January 1, 1970. Therefore,
we can read that column as the password having last been changed 16,809 days after the Unix epoch.

Personally, I like to use the following command to show more easily when the password was last
changed:

sudo passwd -S <username>

This will result in an output that looks something like the following:

Figure 2.8: Checking the date of the last password change for a user

By executing this command, you can view information about any account on your system. The first
column is obviously the username. The second has to do with the status of the password, which in
this case is L, which refers to the fact that the user has a password that is locked. It would show P if
the password was set and usable, or NP if the user didn’t have a password at all.

Chapter 2 43

The third column of this command’s output gives you the actual date of the last password change for
the user. The fourth column tells us how many days are required to pass before the user will be able
to change their password again. In this example, jdoe can change the password any time because
the minimum number of days is set to 0. We’ll talk about how to set the minimum number of days
later on in this chapter, but I’ll give you a brief explanation of what this refers to. At first, it may seem
silly to require a user to wait a certain number of days to be able to change their password. However,
never underestimate the ability of your users to be oppositional. It’s quite common for a user, when
required to change their password, to change their password to satisfy history requirements, only to
then just change it back to what it was originally. By setting a minimum number of days, you’re forcing
a waiting period in between password changes, making it less convenient for your users to cycle back
through to their original password.

The fifth column, as you can probably guess, is the maximum number of days that can pass between
password changes. If you require your users to change their passwords every certain number of days,
you’ll see that in this column. By default, this is set to 99999 days. That number of days is way beyond
the human lifespan, so it may as well be infinite.

Continuing with the sixth column, we have the number of days that will elapse before the expiration
date on which the user is warned that they will soon be required to change their password. In the
seventh column, we set how many days can pass after the password expires, in which case the account
will be disabled. With our example user, this is not set. Finally, with the eighth column (which is not
visible), we can see the number of days since the Unix epoch that will elapse before the account is
disabled (in our case, there’s nothing here, so there is no disabled day set).

We’ll go over setting these fields later, but for now, hopefully you understand the contents of the /
etc/shadow file better.

If at any time you’d like additional clarification, feel free to check out the Ubuntu man pages. A man
page (short for manual page) can give you quite a bit more information about commands as well as
files. For example, the following command shows you the man page for the ls command:

man ls

More specific to this section, you can retrieve man pages for the /etc/shadow files as well:

man passwd
man shadow

Press q on your keyboard to exit out of a man page. Feel free to check out the man pages for any
command in this book to learn more as you go along.

Now that we fully understand how to manage our users, we can also look at how to provide them with
default files in their home directory.

Distributing default configuration files with /etc/skel
In a typical organization, there are usually some defaults that are recommended for users in terms
of files and configuration.

Managing Users and Permissions44

For example, in a company that performs software development, there are likely recommended
settings for text editors and version control systems. Files that are contained within /etc/skel are
copied into the home directory for all new users when you create them (assuming you’ve chosen to
create a home directory while setting up the user).

In fact, you can see this for yourself right now. Execute the following command:

ls -la /etc/skel

Now, you should be able to view the contents of the /etc/skel directory:

Figure 2.9: Default /etc/skel files

You probably already know how to list files within a directory, but I added the -a option because
I wanted to view hidden files as well. The files included in /etc/skel by default are hidden (their
filenames begin with a period). I threw in the -l parameter solely because it shows a long list, which
I think is easier to read.

Each time you create a new user and request a home directory to be created as well, these three files,
shown in Figure 2.9, will be copied into their home directory, along with any other files you create
here. You can verify this by listing the storage of the home directories for the users you’ve created
so far. The .bashrc file in one user’s home directory should be the same as any other, unless they’ve
made changes to it.

Armed with this knowledge, it should be extremely easy to create default files for new users that you
create. For example, you could create a file named welcome with your favorite text editor and place
it in /etc/skel. Perhaps you may create this file to contain helpful phone numbers and information
for new hires in your company. The file would then be automatically copied to the new user’s home
directory when you create the account. The user, after logging in, would see this file in their home
directory and see the information. More practically, if your company has specific editor settings that are
favored for writing code, you can include those files in /etc/skel as well to help ensure your users are
compliant. In fact, you can include default configuration files for any application your company uses.

Go ahead and give it a try. Feel free to create some random text files and then create a new user
afterward, and you’ll see that these files will propagate into the home directories of the new user
accounts that you add to your system.

Chapter 2 45

Now that we have multiple users and have also seen how to manage their default files, we can take a
look at how to switch from one user to another.

Switching users
Now that we have several users on our system, we need to know how to switch between them. Of
course, you can always just log in to the server as one of the users, but you can actually switch to any
user account at any time, provided you either know that user’s password or have sudo access.

The command you will use to switch from one user to another is the su command. If you enter su
with no options, it will assume that you want to switch to root and will ask you for the root password.
As I mentioned earlier, Ubuntu locks the root account by default, so at this point you may not have
a root password.

Even though Ubuntu doesn’t create a password for root by default, some Virtual Private Server (VPS)
providers unlock the root password and actually have you log in as the root user. Having an unlocked
root account is not a standard Ubuntu practice, and is a customization specific to some cloud providers.

Unlocking the root account is actually really simple; all you have to do is create a root password. To
do that, you can execute the following command as any user with sudo access:

sudo passwd

The command will ask you to create and confirm your root password. From this point on, you will
be able to use the root account as any other account. You can log in as root or switch to root—it’s
fully available now. However, you really don’t have to unlock the root account in order to use it. You
certainly can, but there are ways to switch to root without unlocking it, and it’s typically better to leave
the root account locked unless you have a very specific reason to unlock it. The following command
will allow you to switch to root from a user account that has sudo access:

sudo su -

Now you’ll be logged in as root and will be able to execute any command you want with no restrictions
whatsoever. To return to your previously logged-in account, simply type exit. You can tell which user
you’re logged in as by the value at the beginning of your bash prompt.

What if you want to switch to an account other than root? Of course, you can simply log out and
then log in as that user. But you really don’t have to do that. The following command will do the job,
providing you know the password for the account:

su - <username>

The shell will ask for that user’s password and then you’ll be logged in as that user. Again, type exit
when you’re done using the account, which will return you to the one you were using before you
switched.

That command is all well and good if you know the user’s password, but you often won’t. Typically,
in an enterprise, you’ll create an account, force the user to change their password at first login, and
then you will no longer know that user’s password.

Managing Users and Permissions46

Since you have root and sudo access, you could always change their password and then log in as
them. But they’ll know something is amiss if their password suddenly stops working—you’re not
eavesdropping, are you? Armed with sudo access, you can use sudo to change to any user you want to,
even if you don’t know their password. Just prefix our previous command with sudo and you’ll only
need to enter the password for your user account, instead of theirs:

sudo su - <username>

Switching to another user account is often very helpful for support (especially while troubleshooting
permissions). As an example, say that a user comes to you complaining that they cannot access the
contents of a specific directory, or they are unable to run a command. In that case, you can log in to
the server, switch to their user account, and try to reproduce their problem. That way, you can not
only see their problem yourself, but you can also test out whether or not your fix has solved their issue
before you report back to them.

Now we have a full understanding of user accounts, and even how to switch between them. In the
next section, we’ll look into groups, which allow us to categorize our users.

Managing groups
Now that we understand how to create, manage, and switch between user accounts, we’ll need to
understand how to manage groups as well. The concept of groups in Linux is not very different
from other platforms and pretty much serves the exact same purpose. With groups, you can more
efficiently control a user’s access to resources on your server. By assigning a group to a resource (a
file, a directory, and so on), you can allow and disallow access to users by simply adding them or
removing them from the group.

The way this works in Linux is that every file or directory has both a user and a group that takes
ownership of it. This is contrary to platforms such as Windows, which can have multiple groups
assigned to a single resource. With Linux, it’s just one-to-one ownership: just one user and just one
group assigned to each file or directory. If you list the contents of a directory on a Linux system, you
can see this for yourself:

ls -l

The following is a sample line of output from a directory on one of my servers:

-rw-r--r-- 1 root bind 490 2022-04-15 22:05 named.conf

In this case, we can see that root owns the file and that the group bind is also assigned to it. Ignore
the other fields for now; I’ll explain them later when we get to the section of this chapter dedicated to
permissions. For now, just keep in mind that one user and one group are assigned to each file or directory.

While each file or directory can only have one group assignment, any user account can be a member
of any number of groups. Entering the groups command by itself with no options will tell you what
groups your logged-in user is currently a member of. If you add a username to the groups command,
you’ll see which groups that user is a member of. Go ahead and give the groups command a try with
and without providing a username to get the idea.

Chapter 2 47

On the Ubuntu Server platform, you’ll likely see that each of your user accounts is a member of a group
that’s named the same as your username. As I mentioned earlier, when you create a user account,
you’re also creating a group with the same name as the user. On some Linux distributions, though, a
user’s primary group will default to a group called users instead. If you were to execute the groups
command as a user on the Ubuntu desktop platform, you would likely see additional groups. This is
due to the fact that distributions of Linux that cater to being a server platform are often more stripped
down and users on desktop platforms need access to more objects such as printers, audio cards, and
so on. Some packages that can be installed also add additional system users to the server.

If you were curious as to which groups exist on your server, all you would need to do is cat the contents
of the /etc/group file. Similar to the /etc/passwd file we covered earlier, the /etc/group file contains
information regarding the groups that have been created on your system. Go ahead and take a look
at this file on your system:

cat /etc/group

The following is sample output from this file on one of my servers:

Figure 2.10: Sample output from the /etc/group file

Like before, the columns in this file are separated by colons, though each line is only four columns
long. In the first column, we have the name of the group. No surprise there. In the second, we are
able to store a password for the group, but this is not used often as it’s actually a security risk to do
so. In the third column, we have the GID, which is similar in concept to the UID from when we were
discussing users. Finally, in the last column, we (would) see a comma-separated list of each user that
is a member of each of the groups.

Several entries don’t show any group memberships at all. Each user is indeed a member of their own
group, so this is implied even though it doesn’t explicitly call that out in this file. If you take a look
at the /etc/passwd entries for your users, you will see that their primary group (shown as the third
column in the form of a GID) references a group contained in the /etc/group file.

Creating new groups on your system is easy to do and is a great idea for categorizing your users and
what they are able to do. Perhaps you create an accounting group for your accountants, an admins
group for those in your IT department, and a sales group for your salespeople. The groupadd command
allows you to create new groups.

Managing Users and Permissions48

If you wanted to, you could just edit the /etc/group file and add a new line with your group information
manually, although, in my opinion, using groupadd saves you some work and ensures that group
entries are created properly. Editing group and user files directly is typically frowned upon (and a
typo can cause serious problems). Anyway, what follows is an example of creating a new group with
the groupadd command:

sudo groupadd admins

If you take a look at the /etc/group file again after adding a new group, you’ll see that a new line was
created in the file and a GID was chosen for you (the first one that hadn’t been used yet). Removing a
group is just as easy. Just issue the groupdel command followed by the name of the group you wish
to remove:

sudo groupdel admins

Next, we’ll take a look at the usermod command, which will allow you to actually associate users with
groups. The usermod command is more or less a Swiss Army knife; there are several things you can
do with that command (adding a user to a group is just one of its abilities). If we wanted to add a user
to our admins group, we would issue the following command:

sudo usermod -aG admins myuser

In that example, we’re supplying the -a option, which means append, and immediately following
that, we’re using -G, which means we would like to modify secondary group membership. I put the
two options together with a single dash (-aG), but you could also issue them separately (-a -G). The
example I gave only adds the user to additional groups; it doesn’t replace their primary group.

Be careful not to miss the -a option here, as by doing so, you will instead replace all current group
memberships with the new one, which is usually not what you want. The -a option means append, or
to add the existing list of group memberships for that user.

If you wanted to change a user’s primary group, you would use the -g option instead (lowercase g
instead of an uppercase G as we used earlier):

sudo usermod -g <group-name> <username>

Feel free to check out the man pages for the usermod command, to see all the nifty things it allows
you to manage relating to your users. You can peruse the man page for the usermod command with
the following command:

man usermod

One additional example is changing a user’s /home directory. Suppose that one of your users has
undergone a name change, so you’d like to change their username, as well as moving their previous
home directory (and their files) to a new one. The following commands will take care of that:

sudo usermod -d /home/jsmith jdoe -m
sudo usermod -l jsmith jdoe

Chapter 2 49

In that example, we’re moving the home directory for jdoe to /home/jsmith, and then in the second
example, we’re changing the username from jdoe to jsmith.

If you wish to remove a user from a group, you can use the gpasswd command to do so. gpasswd -d
will do the trick:

sudo gpasswd -d <username> <grouptoremove>

In fact, gpasswd can also be used in place of usermod to add a user to a group:

sudo gpasswd -a <username> <group>

So, now you know how to manage groups. With the efficient management of groups, you’ll be able
to manage the resources on your server better. Of course, groups are relatively useless without some
explanation of how to manage permissions (otherwise, nothing would actually allow a member of
a group access to a resource). Later on in this chapter, we’ll cover permissions so that you have a
complete understanding of how to manage user access.

Managing passwords and password policies
In this chapter, we’ve already covered a bit of password management, since I’ve given you a few
examples of the passwd command. If you recall, the passwd command allows us to change the password
of the currently logged-in user. In addition, using passwd as root (and supplying a username) allows
us to change the password for any user account on our system. But that’s not all this command can do.

Locking and unlocking user accounts
One thing I’ve neglected to mention regarding the passwd command is the fact that you can use it to
lock and unlock a user’s account. There are many reasons why you may want to do this. For instance,
if a user is going on vacation or extended leave, perhaps you’d want to lock their account so that it
cannot be used while they are away. After all, the fewer active accounts, the smaller your attack surface.
To lock an account, use the -l option:

sudo passwd -l <username>

And to unlock it, use the -u option:

sudo passwd -u <username>

However, locking an account will not prevent the user from logging in if they have access to the server
via SSH while utilizing public key authentication. In that case, you’d want to remove their ability to
use SSH as well. One common way of doing this is to limit SSH access to users who are members of
a specific group. When you lock an account, simply remove them from the group. Don’t worry so
much about the SSH portion of this discussion if this is new to you. We will discuss securing your
SSH server in Chapter 21, Securing Your Server. For now, just keep in mind that you can use passwd to
lock or unlock accounts, and if you utilize SSH, you’ll want to lock your users out of that to prevent
them from logging in.

Managing Users and Permissions50

However, there’s more to password management than the passwd command, as we can also implement
our own policies, such as viewing or adjusting password expiration details.

Setting password expiration information
Earlier, I mentioned that you can set an expiration date on a user’s password (during our discussion on
the /etc/shadow file). In this section, we’ll go through how to actually do that. Specifically, the chage
command gives us this ability. We can use chage to alter the expiration period of a user’s password,
but it’s also a more convenient way of viewing current expiration information than viewing the /etc/
shadow file. With the -l option of chage, along with providing a username, we can see the relevant info:

sudo chage -l <username>

Using sudo or root is not required to run chage. You’re able to view expiration information for your
own username without needing to escalate permissions. However, if you want to view information
via chage for any user account other than your own, you will need to use sudo.

In the example that follows, we can see the output of this command from a sample user account:

Figure 2.11: Output from the chage command

In the output, we can see values for the date of expiration, the maximum number of days between
password changes, and so on. Basically, it’s the same information stored in /etc/shadow but it’s much
easier to read.

If you would like to change this information, chage will again be the tool of choice. The first example
I’ll provide is a very common one. When creating user accounts, you’ll certainly want them to change
their password when they first log in.

Unfortunately, not everyone will be keen on doing so. The chage command allows you to force a
password change for a user when they first log in. Basically, you can set their number of days to expiry
to 0 as follows:

sudo chage -d 0 <username>

You can see the results of this command immediately if you run chage -l again against the user
account you just modified:

sudo chage -l <username>

Chapter 2 51

The output will display information regarding the password change:

Figure 2.12: The chage command listing a user that has a required password change period set

To set a user account to require a password change after a certain period of days, the following will
do the trick:

sudo chage -M 90 <username>

In that example, I’m setting the user account to expire and require a password change in 90 days.
When the impending date reaches 7 days before the password is to be changed, the user will see a
warning message when they log in.

As I mentioned earlier, users will often do whatever they can to cheat password requirements and
may try to change their password back to what it was originally after satisfying the initially required
password change. You can set the minimum number of days with the -m flag, as you can see in the
next example where we set it to 5 days:

sudo chage -m 5 dscully

The trick with setting a minimum password age is to set it so that it will be inconvenient for the user to
change their password to the original one, but you still want a user to be able to change their password
when they feel the need to (so don’t set it too long, either). If a user wants to change their password
before the minimum number of days elapses (for example, if your user feels that their account may
have been compromised), they can always have you change it for them. However, if you make your
password requirements too much of an inconvenience for your users, it can also work against you.

Setting a password policy
Next, we should discuss setting a password policy. After all, forcing your users to change their passwords
does little good if they change it to something simple, such as abc123. A password policy allows you
to force requirements on your users for things such as length, complexity, and so on.

To facilitate this, we have Pluggable Authentication Module (PAM) at our disposal. PAM gives us
additional functionality and control over the process of authentication, and also provides additional
plugins we can use to extend authentication and add additional features. Although a full walkthrough
of PAM isn’t covered in this book, I recommend keeping it fresh in your mind in case you want to add
additional features later.

Managing Users and Permissions52

Specific to the subject of setting up a password policy, we can install a PAM module to enable this,
which involves installing a new package:

sudo apt install libpam-cracklib

Next, let’s take a look at the following file, which is provided with Ubuntu. Feel free to open it with a
text editor, such as nano, as we’ll need to edit it:

sudo nano /etc/pam.d/common-password

An extremely important tip while modifying configuration files related to authentication (such as
password requirements, sudo access, SSH, and so on) is to always keep a root shell open at all times
while you make changes, and in another shell, test those changes. Do not log out of your initial root
window until you are 100% certain that your changes have been thoroughly tested. While testing a
policy, make sure that not only can your users log in, but your admins too. Otherwise, you may remove
your ability to log in to a server and make changes.

To enable a history requirement for your passwords (meaning the system remembers the last several
passwords a user has used, preventing them from reusing them), we can add the following line to
the file:

password required pam_pwhistory.so remember=99 use_authok

In the example config line, I’m using remember=99, which (as you can probably guess) will cause
our system to remember the last 99 passwords for each user and prevent them from using those
passwords again. If you’ve configured a minimum password age earlier, for example, 5 days, it would
take the user 495 days to cycle back to their original password if you take into account that the user
changes their password once every 5 days, 99 times. That pretty much makes it impossible for the
user to utilize their old passwords.

Another field worth mentioning within the /etc/pam.d/common-password file is the section that reads
difok=3. This configuration mandates that at least three characters have to be different before the
password is considered acceptable. Otherwise, the password would be deemed too similar to the
old one and refused. You can change this value to whatever you like; the default is normally 5 but
Ubuntu defaults it to 3 in their implementation of this config file. In addition, you’ll also see obscure
mentioned in the file as well, which prevents simple passwords from being used (such as common
dictionary words and so on).

Setting a password policy is a great practice to increase the security of your server. However, it’s also
important to not get carried away. In order to strike a balance between security and user frustration,
the challenge is always to create enough restrictions to increase your security, while trying to minimize
the frustration of your users. Of course, the mere mention of the word “password” to a typical user
is enough to frustrate them, so you can’t please everyone. But in terms of overall system security, I’m
sure your users will appreciate the fact that they can be reasonably sure that you as an administrator
have taken the necessary precautions to keep their (and your company’s) data safe. When it comes
down to it, use your best judgment.

Chapter 2 53

Since we’re on the subject of security, we should also take a look at configuring sudo itself, which we’ll
take care of in the next section.

Configuring administrator access with sudo
By now, we’ve already used sudo quite a few times in this book. At this point, you should already be
aware of the fact that sudo allows you to execute commands as if you were logged in as another user,
with root being the default. However, we haven’t had any formal discussion about it yet, nor have we
discussed how to actually modify which of your user accounts are able to utilize sudo.

On all Linux systems, you should protect your root account with a strong password and limit it to
being used by as few people as possible. On Ubuntu, the root account is locked anyway, so unless you
unlocked it by setting a password (or you’re using a version of Ubuntu supplied by a VPS provider),
it cannot be used to log in to the system. Using sudo is an alternative to logging in as root to execute
commands directly, so you can give your administrators access to perform tasks that require root
privileges with sudo without actually giving them your root password or unlocking the root account.
In fact, sudo allows you to be a bit more granular. Using root directly is basically all or nothing—if
someone knows the root password and the root account is enabled, that person is not limited and
can do whatever they want. With sudo, that can also be true, but you can actually restrict some users
to use only particular commands and therefore limit the scope of what they are able to do on the
system. For example, you could give an admin access to install software updates but not allow them
to reboot the server.

By default, members of the sudo group are able to use sudo without any restrictions. Basically, members
of this group can do anything root can do (which is everything). During installation, the user account
you created was made a member of sudo. To give additional users access to sudo, all you would need
to do is add them to the sudo group:

sudo usermod -aG sudo <username>

Not all distributions utilize the sudo group by default, or even automatically install sudo. Other
distributions require you to install sudo manually and may use another group (such as wheel) to
govern access to sudo.

But again, that gives those users access to everything, and that may or may not be what you want.
To actually configure sudo, we use the visudo command. This command assists you with editing /
etc/sudoers, which is the configuration file that governs sudo access. Although you can edit /etc/
sudoers yourself with a text editor, configuring sudo in that way is strongly discouraged. The visudo
command checks to make sure your changes follow the correct syntax and helps prevent you from
accidentally destroying the file. This is a very good approach, because if you did make any errors in
the /etc/sudoers file, you may wind up in a situation where no one is able to gain administrative
control over the server. And while there are ways to recover from such a mistake, it’s certainly not a
very pleasant situation to find yourself in! So, the takeaway here is never to edit the /etc/sudoers file
directly; always use visudo to do so.

Managing Users and Permissions54

Here’s an example of the type of warning the visudo command shows when you make a mistake:

Figure 2.13: The visudo command showing an error

If you do see this error, press e to return to edit the file, and then correct the mistake.

The way this works is when you run visudo from your shell, you are brought into a text editor with
the /etc/sudoers file opened up. You can then make changes to the file and save it like you would
any other text file. By default, Ubuntu opens up the nano text editor when you use visudo. With nano,
you can save changes using Ctrl + w, and you can exit the text editor with Ctrl + x.

So visudo allows you to make changes to who is able to access sudo. But how do you actually make
these changes? Go ahead and scroll through the /etc/sudoers file that visudo opens and you should
see a line similar to the following:

%sudo ALL=(ALL:ALL) ALL

This is the line of configuration that enables sudo access to anyone who is a member of the sudo
group. You can change the group name to any that you’d like, for example, perhaps you’d like to create
a group called admins instead. If you do change this, make sure that you actually create that group
and add yourself and your staff to be members of it before you edit the /etc/sudoers file or log off; it
would be rather embarrassing if you found yourself locked out of administrator access to the server.

Of course, you don’t have to enable access by group. You can actually call out a username instead.
With the /etc/sudoers file, groups are preceded by %, while users are not. As an example of this, we
also have the following line in the file:

root ALL=(ALL:ALL) ALL

Here, we’re calling out a username (in this case, root), but the rest of the line is the same as the one I
pointed out before. While you can certainly copy this line and paste it one or more times (substituting
root for a different username) to grant access to others, using the group approach is really the best
way. It’s easier to add and remove users from a group (such as the sudo group) than it is to use visudo
each time.

So, at this point, you’re probably wondering what the options on /etc/sudoers configuration lines
actually mean. So far, both examples used ALL=(ALL:ALL) All. In order to fully understand sudo,
understanding the other fields is extremely important, so let’s go through them (using the root line
again as an example).

Chapter 2 55

The first ALL means that root is able to use sudo from any terminal. The second ALL means that root
can use sudo to impersonate any other user. The third ALL means that root can impersonate any
other group. Finally, the last ALL refers to what commands this user is able to use; in this case, any
command they wish.

To help drive this home, I’ll give some additional examples. Here’s a hypothetical example:

charlie ALL=(ALL:ALL) /sbin/reboot,/sbin/shutdown

Here, we’re allowing user charlie to execute the reboot and shutdown commands. If user charlie
tries to do something else (such as install a package), they will receive an error message:

Sorry, user charlie is not allowed to execute '/usr/bin/apt install tmux' as
root on ubuntu.

However, if charlie wants to use the reboot or shutdown commands on the server, they will be able
to do so because we explicitly called out those commands while setting up this user’s sudo access. We
can limit this further by changing the first ALL to a machine name, in this case, ubuntu, to reference
the host name of the server I’m using for my examples. I’ve also changed the command that charlie
is allowed to run:

charlie ubuntu=(ALL:ALL) /usr/bin/apt

It’s always a good idea to use full paths to commands when editing sudo permissions, rather than the
shortened versions. For example, we used /usr/bin/apt here, instead of just apt. This is important,
as the user could create a script named apt to do mischievous things that we normally wouldn’t allow
them to do. By using the full path, we’re limiting the user to the binary stored at that path.

Now, charlie is only able to use apt. They can use apt update, apt dist-upgrade, and any other
sub-command of apt. But if they try to reboot the server, remove protected files, add users, or anything
else we haven’t explicitly set, they will be prevented from doing so.

We have another problem, though. We’re allowing charlie to impersonate other users. This may not
be completely terrible given the context of installing packages (impersonating another user would be
useless unless that user also has access to install packages), but it’s bad form to allow this unless we
really need to. In this case, we could just remove the (ALL:ALL) from the line altogether to prevent
charlie from using the -u option of sudo to run commands as other users:

charlie ubuntu= /usr/bin/apt

On the other hand, if we actually do want charlie to be able to impersonate other users (but only
specific users), we can call out the username and group that charlie is allowed to act on behalf of by
setting those values:

charlie ubuntu=(dscully:admins) ALL

In that example, charlie is able to run commands on behalf of the user dscully and the group admins.

Managing Users and Permissions56

Of course, there is much more to sudo than what I’ve mentioned in this section. Entire books could be
written about sudo (and have been), but 99% of what you will need for your daily management of this
tool involves how to add access to users while being specific about what each user is able to do. As a
best practice, use groups when you can (for example, you could have an apt group, a reboot group,
and so on) and be as specific as you can regarding who is able to do what. This way, you’re not only
able to keep the root account private (or even better, disabled), but you also have more accountability
on your servers.

Now that we’ve explored granting access to sudo, we will next take a look at permissions, which give
us even more control over what our users are able to access.

Setting permissions on files and directories
In this section, all the user management we’ve done in this chapter so far all comes together. We’ve
learned how to add accounts, manage accounts, and secure them, but we haven’t actually done any
work regarding managing the resources as far as who is able to access them. In this section, I’ll give
you a brief overview of how permissions work in Ubuntu Server and then I’ll provide some examples
for customizing them.

Viewing permissions
I’m sure by now that you understand how to list the contents of a directory with the ls command.
When it comes to viewing permissions, the -l flag is especially handy, as the output that the long
listing provides allows us to view the permissions of an object:

ls -l

The following are some example, hypothetical file listings:

-rw-rw-rw- 1 doctor 5 Jan 11 12:52 welcome
-rw-r--r-- 1 root root 665 Feb 19 profile
-rwxr-xr-x 1 dalek dalek 35125 Nov 7 exterminate

In each line, we see several fields of information. The first column is our permission string for the
object (for example, -rw-r—r--), which we’ll cover in more detail shortly. We also see the link count
for the object (second column). Links are beyond the scope of this chapter but will be discussed in
Chapter 5, Managing Files and Directories. Continuing on, the user that owns the file is displayed in the
third column, the group that owns the file is in the fourth column, the size in bytes is in the fifth, the
last date the file was modified is in the sixth, and finally there is the name of the file.

Keep in mind that depending on how your shell is configured, your output may look different and
the fields may be in different places. For the sake of our discussion on permissions, what we’re really
concerned with is the permissions string, as well as the owning user and group. In this case, we can
see that the first file (named welcome) is owned by a user named doctor. The second file is named
profile and is owned by root. Finally, we have a file named exterminate owned by a user named dalek.

Chapter 2 57

With these files, we have the permission strings of -rw-rw-rw-, -rw-r--r--, and -rwxr-xr-x
respectively. If you haven’t worked with permissions before, these may seem strange, but it’s actually
quite easy when you break them down. Each permission string can be broken down into four groups,
as I’ll show you in the following table:

Object type User Group World

- rw- rw- rw-

- rw- r-- r--

- rwx rwx r-x

I’ve broken down each of the three example permission strings into four groups. Basically, I split them
each at the first character and then again every third. The first section of a permission string is just
one character. In each of these examples, it’s just a single hyphen. This refers to what type the object is.
Is it a directory? A file? A link? In our case, each of these permission strings is a file, because the first
positions of the permission strings are all hyphens. If the object were a directory, the first character
would’ve been a d instead of a -. If the object were a link, this field would’ve been l (lowercase L) instead.

In the next section, in the second column of each object, we have three characters, rw-, rw-, and rwx
respectively. This refers to the permissions that apply to the user that owns the file. For example, here
is the first permission string again:

-rw-rw-rw- 1 doctor doctor 5 Jan 11 12:52 welcome

The third section of the preceding code output shows us that doctor is the user that owns the file.
Therefore, referring back to the table, the second column of the permission string (rw-) applies
specifically to the user doctor. Moving on, the third column of permissions is also three characters;
in this case, rw- again. This section of the permissions string refers to the group that owns the file.
In this case, the group is also named doctor, as you can see in column four of the preceding code
output. Finally, the last section of the permission string, visualized in the table (rw- yet again, in this
case), refers to world, also known as other. This basically refers to anyone else other than the owning
user and owning group. Therefore, literally everyone else gets at least rw- permissions on the object.

Individually, r stands for read and w stands for write. Therefore, we can read the second column (rw-),
indicating that the user (doctor) has access to read and write to this file. The third column (rw- again)
tells us the doctor group also has read and write access to this file. The fourth column of the permission
string is the same, so anyone else would also have read and write permissions to the file as well.

The third permission string I gave as an example looks a bit different. Here it is again:

-rwxr-xr-x 1 dalek dalek 35125 Nov 7 exterminate

Here, we see the x attribute set. The x attribute refers to the ability to execute the file as a script. So,
with that in mind, we know that this file is likely a script and is executable by users, groups, and others.
Given the filename of exterminate, this is rather suspicious, and if it were a real file, we’d probably
want to look into it.

Managing Users and Permissions58

If a permission is not set, it will simply be a single hyphen where there would normally be r, w, or x.
This is the same as indicating that a permission is disabled. Here are some examples:

•	 rwx: Object has read, write, and execute permissions set for this field
•	 r-x: Object has read enabled, write disabled, and execute enabled for this field
•	 r--: Object has read enabled, write disabled, and execute disabled for this field
•	 ---: Object has no permissions enabled for this field

Bringing this discussion all the way home, here are a few more permission strings:

-rw-r--r-- 1 sue accounting 35125 Nov 7 budget.txt
drwxr-x--- 1 bob sales 35125 Nov 7 annual_projects

For the first of these examples, we see that sue is the owning user of budget.txt and that this file is
assigned an accounting group. This object is readable and writable by sue and readable by everyone else
(group and world). This is probably bad, considering this is a budget file and is probably confidential.
We’ll change it later.

The annual_projects object is a directory, which we can tell from the d in the first column. This
directory is owned by the bob user and the sales group. However, since this is a directory, each of
the permission bits has different meanings. In the following two tables, I’ll outline the meanings of
these bits for files and again for directories:

•	 Files:

Bit Meaning

r The file can be read

w The file can be written to

x The file can be executed as a program

•	 Directories:

Bit Meaning

r The contents of the directory can be viewed

w The contents of the directory can be altered

x The user or group can use cd to go inside the directory

As you can see, permissions are read differently depending on their context: whether they apply to a
file or a directory. In the example of the annual_projects directory, bob has rwx permissions to the
directory. This means that the user bob can do everything (view the contents, add or remove contents,
and use cd to move the current directory of his shell into the directory). Regarding a group, members
of the sales group are able to view the contents of this directory and cd into it. However, no one in the
sales group can add or remove items to or from the directory. On this object, other has no permissions
set at all. This means that no one else can do anything at all with this object, not even view its contents.

Chapter 2 59

Changing permissions
So, now we understand how to read permissions on files and directories. That’s great, but how do we
alter them? As I mentioned earlier, the budget.txt file is readable by everyone (other). This is not good
because the file is confidential. To change permissions on an object, we will use the chmod command.
This command allows us to alter the permissions of files and directories in a few different ways.

First, we can simply remove read access from the sue user’s budget file by removing the read bit from
the other field. We can do that with the following example:

chmod o-r budget.txt

If we are currently not in the directory where the file resides, we need to give a full path:

chmod o-r /home/sue/budget.txt

If you’re using the chmod command against files other than those you own yourself, you’ll need to use
sudo.

But either way, you probably get the idea. With this example, we’re removing the r bit from other (o-
r). If we wanted to add this bit instead, we would simply use + instead of -. Here are some additional
examples of chmod in action:

•	 chmod u+rw <filename>: The object gets rw added to the user column
•	 chmod g+r <filename>: The owning group is given read access
•	 chmod o-rw <filename>: Other is stripped of the rw bits

In addition, you can also use octal point values to manage and modify permissions. This is actually
the most common method of altering permissions. I like to think of this as a scoring system. That’s
not what it is, but it makes it a lot easier to understand to think of each type of access as having its
own value. Basically, each of the permission bits (r, w, and x) has its own octal equivalent, as follows:

•	 Read: 4
•	 Write: 2
•	 Execute: 1

With this style, there are only a few possibilities for numbers you can achieve when combining these
octal values (each can only be used once). Therefore, we can get 0, 1, 2, 3, 4, 5, 6, and 7 by adding (or
not adding) these numbers in different combinations. Some of them you’ll almost never see, such as
an object having write access but not read. For the most part, you’ll see 0, 4, 5, 6, and 7 used with chmod
most often. For example, if we add Read and Write, we get 6. If we add Read and Execute, we get 5. If
we add all three, we get 7. If we add no permissions, we get 0. We repeat this for each column (User,
Group, and Other) to come up with a string of three numbers. Here are some examples:

•	 600: User has read and write (4+2). No other permissions are set.

This is the same as -rw-------.

•	 740: User has read, write, and execute. Group has read. Other has nothing.

Managing Users and Permissions60

This is the same as -rwxr-----.

•	 770: Both User and Group have full access (read, write, and execute). Other has nothing.

This is the same as -rwxrwx---.

•	 777: Everyone has everything.

This is the same as -rwxrwxrwx.

Going back to chmod, we can use this numbering system in practice:

•	 chmod 600 filename.txt

•	 chmod 740 filename.txt

•	 chmod 770 filename.txt

Hopefully you get the idea. If you wanted to change the permissions of a directory, the -R option may
be helpful to you. This makes the changes recursive, meaning that you’ll not only make the changes
to the directory but also to all files and directories underneath it in one shot:

chmod 770 -R mydir

While using -R with chmod can save you some time, it can also cause trouble if you have a mix of
directories and files underneath the directory you’re changing permissions on. The previous example
gives permissions 770 to mydir and all of its contents. If there are files inside, they are now given
executable permissions to the user and group, since 7 includes the execute bit (value of 1). This may
not be what you want. We can use the find command to differentiate these. While find is out of the
scope of this chapter, it should be relatively simple to see what the following commands are doing
and how they may be useful:

find /path/to/dir/ -type f -exec chmod 644 {} \;
find /path/to/dir/ -type d -exec chmod 755 {} \;

Basically, in the first example, the find command is locating all files (-type f) in /path/to/dir/ and
everything it finds, it executes chmod 644 against. The second example is locating all directories in
this same path and changing them all to permission 755. The find command isn’t covered in detail
here because it easily deserves a chapter of its own, but I’m including it here because hopefully these
examples are useful and will be handy for you to include in your own list of useful commands.

Changing the ownership of objects
Finally, we’ll need to know how to change the ownership of files and directories. It’s often the case that
a particular user needs to gain access to an object, or perhaps we need to change the owning group
as well. We can change user and group ownership of a file or directory with the chown command. As
an example, if we wanted to change the owner of a file to sue, we could do the following:

sudo chown sue myfile.txt

Chapter 2 61

In the case of a directory, we can also use the -R flag to change the ownership of the directory itself,
as well as all the files and directories it may contain:

sudo chown -R sue mydir

If we would like to change the group assignment to the object, we would follow the following syntax:

sudo chown sue:sales myfile.txt

Notice the colon separating the user and the group. With that command, we established that we would
like the sue user and the sales group to own this resource. Again, we could use -R if the object were
a directory and we wanted to make the changes recursive.

Another command worth knowing is the chgrp command, which allows you to directly change the
group ownership of a file. To use it, you can execute the chgrp command along with the group you’d
like to own the file, followed by the filename. For example, our previous chown command can be
simplified to the following, since we were only modifying the group assignment of that file:

sudo chgrp sales myfile.txt

Just like the chown command, we can use the -R option with chgrp to make our changes recursively,
in the case of a directory.

Well, there you have it. You should now be able to manage permissions of the files and directories on
your server. If you haven’t worked through permissions on a Linux system before, it may take a few
tries before you get the hang of it. The best thing for you to do is to practice. Create some files and
directories (as well as users) and manage their permissions. Try to remove a user’s access to a resource
and then try to access that resource as that user anyway and see what errors you get. Fix those errors
and work through more examples. With practice, you should be able to get a handle on this very quickly.

Summary
In Linux administration and related fields, managing users and permissions is something you’ll find
yourself doing quite a bit. New users will join your organization, while others will leave, so this is
something that will become ingrained in your mental toolset. Even if you’re the only person using
your servers, you’ll find yourself managing permissions for applications as well, given the fact that
processes cannot function if they don’t have access to their required resources.

In this chapter, we took a lengthy dive into managing users, groups, and permissions. We worked
through creating and removing users, assigning permissions, and managing administrative access
with sudo. Practice these concepts on your server. When you get the hang of it, I’ll see you in our next
chapter, where we’ll discuss all things related to package management. It’s going to be epic.

Relevant videos
•	 Linux Crash Course – Managing Users (LearnLinuxTV): https://linux.video/lcc-users
•	 Linux Crash Course – Understanding File & Directory Permissions (LearnLinuxTV):

https://linux.video/lcc-perm

https://linux.video/lcc-users
https://linux.video/lcc-perm

Managing Users and Permissions62

•	 Linux Crash Course – usermod (LearnLinuxTV): https://linux.video/lcc-usermod
•	 Linux Crash Course – sudo (LearnLinuxTV): https://linux.video/lcc-sudo
•	 Linux Crash Course – User Account & Password Expiration (LearnLinuxTV):

https://linux.video/lcc-userexp

•	 Linux Crash Course – Managing Groups (LearnLinuxTV): https://linux.video/lcc-groups

Further reading
•	 File permissions (Ubuntu community wiki): https://learnlinux.link/ubuntu-perms
•	 User management (Ubuntu documentation): https://learnlinux.link/sec-users

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/lcc-usermod
https://linux.video/lcc-sudo
https://linux.video/lcc-userexp
https://linux.video/lcc-groups
https://learnlinux.link/ubuntu-perms
https://learnlinux.link/sec-users
https://packt.link/LWaZ0

3
Managing Software Packages

Now that you have a server installation set up, and you know how to manage users on it, it’s time
to cover the management of software. The Ubuntu platform has a huge range of software available,
featuring packages for everything from server administration to games. In fact, as of the time I’m
writing this chapter, there are over 60,000 packages in Ubuntu’s repositories. That’s a lot of software
packages, and in this chapter, we’ll take a look at how to manage them. We’ll cover how to install,
remove, and update packages, as well as the use of related tools.

As we go through these concepts, we will cover:

•	 Understanding Linux package management
•	 Understanding the differences between Debian and Snap packages
•	 Installing and removing software
•	 Searching for packages
•	 Managing package repositories
•	 Backing up and restoring Debian packages
•	 Cleaning up orphaned APT packages
•	 Taking advantage of hardware enablement updates

To get started, let’s build an understanding of how software packages are distributed in Ubuntu, and
the basic principles of the concept of package management.

Understanding Linux package management
Nowadays, app stores are all the rage on most platforms; typically, you’ll have one central location from
which to retrieve applications, allowing you to install them on your device. Even phones and tablets
utilize a central software repository in which software is curated and made available. The Android
platform has Google Play, Apple has its App Store, and so on. For those that have used Linux for a while,
this concept isn’t new. The concept of software repositories is similar to that of app stores and has
been around within the Linux community since long before cellular phones even had color screens.

Managing Software Packages64

Linux has had package management since the ‘90s, initially popularized by Debian and then Red
Hat. Software repositories are generally made available in the form of mirrors, to which your server
subscribes. Mirrors are available across a multitude of geographic areas, so, typically, your installation of
Ubuntu Server would subscribe to the mirror closest to you. These mirrors are populated with software
packages that you’ll be able to install. Many packages depend on other packages, so various tools on
the Linux platform exist to automatically handle these dependencies for you. Not all distributions of
Linux feature package management and dependency resolution, but Ubuntu certainly does, benefiting
from the groundwork already built by Debian.

Packages contained within these mirrors are constantly changing. Traditionally, an individual known
as a package maintainer is responsible for one or more packages and ships new versions to the
repositories for approval and, eventually, distribution to mirrors. Specific to Ubuntu’s repositories,
a group of developers, rather than just a single maintainer, is responsible for maintaining packages.
Most of the time, the new version of a package is provided in order to patch a security vulnerability,
but otherwise it contains no new features. With the majority of Ubuntu’s packages being open source,
anyone is able to look at the source code, find problems, and report issues. When vulnerabilities are
found, the responsible team will review the claim and then release an updated version to correct it.
This process happens very quickly, and I’ve seen severe vulnerabilities patched even on the same day
that they were reported in some cases. Ubuntu developers are definitely on top of their game in terms
of taking care of security issues.

New versions of packages are also sometimes feature updates, which are updates released to introduce
new features not necessarily tied to a security vulnerability. This could be a new version of a desktop
application such as Firefox or a server package such as MySQL. Most of the time, though, new versions
of packages that are vastly different are held for the next Ubuntu release. The reason for this is that
too much change can cause your server to not be as stable, and experience application or even entire
OS-level crashes. Instead, known working and stable packages are preferred; however, given the fact
that Ubuntu releases every six months, you don’t have to wait very long.

Specifically, feature updates in an Ubuntu release must go through an approval process before being
made available in the default repositories, and these feature updates are specifically referred to as
Stable Release Updates (SRUs). There’s an entire process around how these updates are approved, but
the general takeaway is that there should be a good reason to implement a major version change in
a stable, long-term Ubuntu release.

As a server administrator, you’ll often need to make a choice between security and feature updates.
Security updates are the most important of all and allow you to patch your servers in response to
security vulnerabilities. Sometimes, feature updates become required in your organization because
it’s decided that new features may benefit you or may become required for current objectives. In this
chapter, we won’t focus on installing security updates (we’ll take care of that in Chapter 21, Securing
Your Server), but it’s important to understand the reasons new packages are made available to you.

Package management is typically very convenient in Ubuntu, with security updates and bug fixes
coming regularly. With just one command (which we’ll get to shortly), you can install a package along
with all of its dependencies. Having performed manual dependency resolution myself, I can tell you
first-hand that having dependencies handled automatically is a wonderful thing.

Chapter 3 65

The main benefit of how packages are maintained on a Linux server is that you generally don’t have
to search the internet for packages to download, as Ubuntu’s repositories contain most of the ones
you’ll ever need. As we continue through this chapter, you’ll come to know everything you need in
order to manage this software.

Understanding the differences between Debian and
Snap packages
Now, before we get into the ins and outs of managing packages, there are actually two completely
different types of packages available to you, and you should understand the differences between
them. As of the time of writing, we’re at a kind of crossroads regarding the way in which software is
managed in Linux.

Traditionally, each distribution has its own package format and its own utilities to manage them. Ubuntu
utilizes Debian packages (with package names ending in .deb) as the main package format, which
Ubuntu inherits from the Debian distribution (Ubuntu is forked from Debian, which means that it uses
Debian as a foundation). Ubuntu and Debian utilize the apt and dpkg commands to manage packages.
On the other hand, distributions such as CentOS and Red Hat use RPM packages for their distributions,
and the dnf command to manage them. There are other distributions and package formats as well, but
for this book, we’ll stick with what’s available in Ubuntu. First, let’s discuss Debian packages.

Debian packages
Debian packages have been the main type of package in Ubuntu for the entire existence of the
distribution so far. When you search online for how to install something in Ubuntu, chances are,
you’re going to be installing a Debian package. These packages are known as Debian packages because
Ubuntu is built from Debian sources and utilizes the same commands in order to install these packages.
So even though Ubuntu is not Debian (Debian is a completely different distribution), they both use
the same package format primarily.

The naming may be confusing for newcomers, because if Ubuntu is considered a different distribution
than Debian, then why refer to its packages as “Debian” packages? Debian packages have a filename that
ends in .deb, and this package format originated in Debian. Ubuntu didn’t develop its own package type;
it uses the same package format as Debian. Therefore, whether we are installing packages in Debian
or Ubuntu using a command such as apt, Debian packages are the type of packages used for both.

If you’ve worked with Ubuntu before reading this book, then chances are, you’ve already used the
apt series of commands to carry out some package management. Debian packages are great because
when paired with the apt command, they are easy to use and handle dependency resolution for you.
However, they present some challenges and major drawbacks.

First, the majority of the distribution is made up of Debian packages. This means that the Linux kernel,
system packages, libraries, and security updates are all Debian packages that are installed when you
install Ubuntu Server. When you install security updates, Debian packages are installed. The reason
this may be a problem is that other software you’ll be installing, such as Apache, MariaDB, and so on,
are also Debian packages, and may conflict with system packages when one package requires a pre-
requisite package that conflicts with another.

Managing Software Packages66

This can lead to a situation where you can’t install packages at all. Package maintainers are generally
good at avoiding this scenario, so conflicts aren’t incredibly common nowadays.

However, with Debian packages, if a system library gets corrupted, literally every piece of software
that depends on it will fail. Ubuntu developers pay a great deal of attention to this, so you shouldn’t
run into issues. But the truth is, this is a lot of work for the maintainers of Ubuntu to deal with.

Another concern with Debian packages is software availability. When a new major version of a package
is released, it generally will not be offered to you until the next release of the distribution. This means
that if you want a version of PHP, Apache, or some other piece of software that’s newer than what your
current release of Ubuntu features, you generally will not have it offered to you. Instead, you typically
wait until the next release of the entire distribution. There are some exceptions to this, such as Firefox
in the desktop version of Ubuntu. As mentioned before, new major package versions are exceptions
to the rule and come from the SRU approval process. While having tried-and-true software available
that has been extensively tested offers better stability, sometimes you may require a newer version of
particular software than what is available, which may lead you to consider alternative sources. After
all, you don’t have to install a new version of Windows or macOS just to install newer applications!

Universal packages are a new concept for Linux and are intended to be a single package format that
multiple distributions recognize. The idea is that a developer only has to compile one package (instead
of a separate package for each distribution) and users would only need to download a single package
regardless of their chosen Linux flavor. The next section will discuss a type of universal package
called Snaps.

Snap packages
As it stands today, developers would need to create multiple package types to support Linux. Perhaps
they’ll create Debian packages for Debian itself and Ubuntu, and then RPM packages for CentOS, Red
Hat Enterprise Linux, and SuSE. And while you may think that having to create two package types isn’t
all that bad, consider that each of the RPM-based distributions needs its own specific RPM package,
and you can see how it might be tedious to a developer to have to create five or more different packages
for any one release of their software.

As a result of this, there’s a push to adopt a single package format that each distribution can install
that is independent of the system package type. This concept is known as universal packages, and
the idea is to have a standard package type that can be installed on any Linux distribution. As a result,
developers would only have to create one package to have their application work on all the popular
distros.

The Linux community commonly uses the word distro as a contraction of the term dis-
tribution.

Chapter 3 67

Another benefit of universal packages is that they have all of their dependencies built in, so conflicts
are less likely to occur; everything the application needs would be contained in one single package.
This is great because the likelihood of you running into package conflicts with universal packages is
next to non-existent.

As with all things in the IT industry, we can’t collectively be satisfied and decide on the proper
technology. As such, there is debate among the community regarding which one of the multiple
types of universal packages is the most suitable. I won’t get into the political debates in this book, as
each has its strengths and weaknesses. But even easier for us in regards to Ubuntu Server, only one
of them is ideal for server installations anyway. The competing technologies for universal packages
include Flatpak, AppImage, and Snap packages.

Canonical, the makers of Ubuntu, understand the pain points that developers and users experience, and
have been making a great effort to change how packages are managed. The type of universal package
they’ve developed to address these concerns is known as the Snap package. Like all universal packages,
Snap packages (or more simply, Snaps) have no impact on the underlying Debian packages at all and
are completely independent, thus removing the possibility of conflicts with your system packages.
This allows you to have a newer version of an application installed than what would otherwise be
made available. Since Snaps are installed separately and independently from the underlying Debian
packages, there’s no reason to withhold them. Snap packages are better in just about every way and
are a great concept. The only downside might be that they are larger packages, since they include not
only the application itself but also all the libraries they require in one single package. However, they’re
really not that large and shouldn’t cause an issue with disk space. These packages are no bigger than
a typical application on macOS or Windows.

So, which should you choose? It really just depends on your use case. Each of the universal package
types is good at some things but has downsides. Flatpaks and AppImages are also great technologies,
but where they fall behind for our use case is that they don’t support server (non-Graphical User
Interface, or non-GUI) applications as well. This means that these package types are best for installing
applications you’d normally find on a desktop Ubuntu installation, such as music players, browsers,
graphical text editors, and so on. Snap packages target both GUI and non-GUI apps. Since server
installations normally don’t contain a GUI at all, this makes our choice for us. It could be the case that
Flatpaks and AppImages start supporting non-GUI apps better in the future, but for now, the choice
of universal package format is simple.

As it stands today, though, the majority of the packages we’ll be installing are going to be Debian
packages, as Snap packages are a bit slow to catch on. They’re making steady progress, but it remains
to be seen how well the industry will embrace them. For now, it’s probably best to evaluate Snap
packages when they’re available and to choose the most appropriate package type based on availability,
security, version, and support.

With the differences between Snaps and Debian packages out of the way, let’s work through some
examples of how to actually manage the software on our server. We’ll look at commands to search for
available packages, and then we’ll install them and remove them.

Managing Software Packages68

Installing and removing software
Before we begin, we will want to research a bit regarding the application we want to install. In Ubuntu,
there are multiple ways of installing software, so the best way to find out how to get started is by simply
checking the documentation on the website for the application we want to install. Typically, a Google
search will do (just make sure you check the domain and are on the correct site). Most software will
have installation instructions for various platforms, including Ubuntu. Most of the time, it will just
tell you to download the Debian package format via the apt install command. Other times, the
software may have a Snap available, or even a PPA repository (we’ll discuss PPA repositories later on
in this chapter). Let’s start our package management journey by taking a look at the apt commands
that are used to install Debian packages.

Managing Debian packages with apt
APT, or Advanced Package Tool, is a suite of tools that allows us to install, remove, and update Debian
packages. There are various sub-commands that make up this suite, which we’ll go over now. The most
popular variation of the apt command is apt install. If you’ve ever read instructions for how to do
something in Ubuntu, chances are you’ve already run that command to install a package. And that’s
exactly what it does: it allows you to install packages for Ubuntu over the command line. For example,
the following command will install the openssh-server package:

sudo apt install openssh-server

You can also install multiple packages at a time by separating each with a space, instead of installing
each package one at a time. The following example will install three different packages:

sudo apt install <package1> <package2> <package3>

In some books, blogs, and articles, you may see longer versions of apt commands, such as apt-get
install instead of just apt install. Being able to shorten commands such as apt-get install to
apt install is a relatively new feature of apt in Debian and Ubuntu. Both methods are perfectly valid,
but simplifying APT commands down to just apt is preferred going forward.

So, what actually happens when you install a package with apt? If you’ve run through the process
before, you’re probably accustomed to it already. But, typically, the process begins with apt calculating
dependencies. The majority of packages require other packages to function, so apt will check to
ensure that the package you’re requesting is available and that its dependencies are available as well.

Chapter 3 69

First, you’ll see a summary of the changes that apt wants to make to your server. In the case of installing
the apache2 package on an unconfigured Ubuntu Server, I enter the following command:

sudo apt install apache2

I see the following output on my system when it starts to install:

Figure 3.1: Installing Apache on an example server

Even though I only asked for apache2, apt informs me that it also needs to install apache2-bin, apache2-
data, apache2-utils, and libapr1 (and others) in order to satisfy the dependencies for the apache2
package. apt also suggests that I install apache2-doc, apache2-suexec-pristine, and a few others,
though they are optional and are not required. You can install the suggested packages by adding the
--install-suggests option to the apt install command, but that isn’t always a good idea as it may
install a large number of packages that you may not need. You can, of course, cherry-pick the suggested
packages individually by using the apt command to install any one or more of them manually.

Most of the time, though, you probably won’t want to do this; it’s usually better to keep your installed
packages to a lean minimum and install only the packages you need. As we’ll discuss in Chapter 21,
Securing Your Server, the fewer packages you install, the smaller the attack surface of your server.

Managing Software Packages70

While installing or updating packages via apt, you might see a message come up that asks you whether
or not you’re comfortable with having background services restarted as part of the process:

Figure 3.2: Service restart prompt during package installation/upgrade

We’ll cover concepts around process management in Chapter 7, Controlling and Managing Processes,
so it’s not something you should focus on right now. For a quick description in order to hold you over
until then, there’s services running in the background on all Linux servers, and each one provides a
particular function. Restarting a service will ensure it restarts with all the latest patches and tweaks
applied, but any user connected to one of the services you restart will get disconnected. For now, you
can simply press Enter to accept the defaults anytime you see this message.

Another option that is common with installing packages via apt is the -y option, which assumes yes to
the confirmation prompt where you choose if you want to continue or not. For example, my previous
output included the line Do you want to continue? [Y/n]. If we had used -y, the command would
have proceeded to install the package without any confirmation. This can be useful for administrators
in a hurry, though I personally don’t see the need for this unless you are scripting your package
installations. In fact, it can sometimes be a bad idea, because by assuming yes, you may be confirming
something you’d later regret.

Another neat default in Ubuntu Server is that it automatically configures most packages to make their
daemons start up and also be enabled so that they start with each boot. Using the earlier example of
apache2, the apache2 service will start and the application will automatically start running as soon
as you install the package.

Chapter 3 71

This may seem like a good idea for the sake of convenience, but not everyone prefers this automation. As
I’ve mentioned, the more packages installed on your server, the higher the attack surface, but running
services (also known as daemons, or units) are each a method of entry for miscreants should there be
a security vulnerability. Therefore, some distributions don’t enable and start daemons automatically
when you install packages. The way I see it, though, you should only install packages you actually
intend to use, so it stands to reason that if you go through the trouble of manually installing a package
such as apache2, you probably want to start using it.

When you install a package with the apt command, it searches its local database for the package you
named. If it doesn’t find it, it will throw an error. Sometimes, this error may be because the package
isn’t available or perhaps the version that apt wants to install no longer exists. Ubuntu’s repositories
move very quickly; new versions of packages are added almost daily. When a new version of a package
is added, its older equivalent may be removed. For this reason, it’s recommended that you update your
package sources from time to time. Doing so is easy, using the following command:

sudo apt update

This command doesn’t actually update any packages; it merely checks in with your local mirror to see
if any packages have been added or removed and updates your local index. This command is useful
because installations of packages can fail if your sources aren’t up to date. In most cases, the symptom
will be that apt errors out of the process when it can’t find a package it’s looking for, something that
would’ve been available normally.

Removing packages is also very easy and follows a very similar syntax; you would only need to replace
the install keyword with remove:

sudo apt remove <package>

And, just like with the install option, you can remove multiple packages at the same time. The
following example will remove three packages:

sudo apt remove <package1> <package2> <package3>

If you’d like to not only remove a package but also wipe out its configuration, you can use the --purge
option:

sudo apt remove --purge <package>

This will not only remove the package but wipe out its configuration directory (applications typically
store their configuration files in a sub-directory of /etc).

So, that concludes the basics of managing Debian packages with apt. Now, let’s move on to managing
Snaps.

Managing Snap packages with snap
To manage Snap packages, we use the snap command. The snap command features several options
we can use to search for, install, and remove Snap packages from our server or workstation.

Managing Software Packages72

To begin, we can use the snap find command along with a keyword to display a list of Snap packages
available to us that match that keyword:

snap find <keyword>

Basically, you just simply type the snap find command along with a search term to look for. One
example could be the nmap application, which is a useful tool to have if we’re managing a network:

snap find nmap

In the case of nmap, this utility is available in Ubuntu’s default repositories, so you don’t need to use the
Snap package to install it. Typically, though, the Snap version will be newer and have more features
than what is available in the APT repositories. If we wish to install the Snap version, we can use the
following command to do so:

sudo snap install nmap

With the install option, we need to use sudo since the act of installing a package makes changes on
the server. For a simple find, we can omit sudo.

Now that we have nmap installed, we can check the location of the nmap binary with the which command.
We can use the which command to find the location of the binary file for commands that are available—it
will show the path to the binary if the appropriate package is installed. If the command is not available,
the which command will show no output. So, if we run the following command, we should now see
the path of that binary printed to the screen:

which nmap

This will return the following output, showing that the Snap version of nmap is run from a special place:

Figure 3.3: Checking the location of the nmap binary

Now, when we run nmap, we’re actually running it from /snap/bin/nmap. If we were to install nmap via
apt, it would run from /usr/bin/nmap instead. If we also have the nmap utility installed from Ubuntu’s
APT repositories, then we can run either one at any time by calling out the full path to the binary we
want to run, since Snap packages are independent of the APT packages. For example, if we had nmap
installed via both snap and apt, we could run Ubuntu’s version by running /usr/bin/nmap and the
Snap version by running /snap/bin/nmap.

Removing an installed Snap package is easy. We simply use the remove option:

sudo snap remove nmap

Chapter 3 73

If we issue that command, then nmap (or whichever Snap package we designate) is removed from the
system.

To update a package, we use the refresh option along with the name of a package to update:

sudo snap refresh <package>

With that command, the package will be updated to the newest version available. Going even further,
we can attempt to update every Snap on our server with the same command (without specifying a
package):

sudo snap refresh

As you can see, managing Snap packages is fairly straightforward. Using the snap suite of commands,
we can install, update, or remove packages from our server or workstation. The snap find command
allows us to find new Snap packages to install. Perhaps as the technology matures, we may find
ourselves installing more Snap packages than Debian packages, but that remains to be seen. For now,
it’s a nice benefit to have two options to consider when installing new software.

In addition to being able to install packages, there are some additional tips and considerations around
searching for packages. After all, you can’t install a package if you don’t know what’s available. We’ll
explore searching for packages in the next section.

Searching for packages
Unfortunately, the naming conventions used for packages in Ubuntu Server aren’t always obvious.
Worse, package names are often very different from one distribution to another even for the same
piece of software. While this book and other tutorials online will outline the exact steps needed to
install software, if you’re ever on your own, it really doesn’t help much if you don’t know the name of
the package you want to install. In this section, I’ll try to take some of the mystery out of searching
for packages.

In the previous section, we went over searching for Snap packages, so I won’t repeat that here. The APT
suite of utilities also has a means of searching for packages as well, which is the apt search command.
We can use the following command to search for packages, by providing a keyword:

apt search <search term>

The output from this command will show a list of packages that match your search criteria, with their
names and descriptions. If, for example, you wanted to install the PHP plugin for Apache and you
didn’t already know the name of the associated package, the following would narrow it down:

apt search apache php

In the output, we will get a list of more than a handful of packages, but we can deduce from the package
descriptions in the output that libapache2-mod-php is most likely the one we want. We can proceed
to install it using apt, as we would normally do.

Managing Software Packages74

If we’re not sure whether or not this is truly the package we want, we can view more information
regarding this (or any other) package with the apt-cache show command:

apt-cache show libapache2-mod-php

The output of this command is illustrated in the following screenshot:

Figure 3.4: Showing the info of a Debian package

With this command, we can see additional details regarding the package we’re considering installing.
In this case, we learn that the libapache2-mod-php package also depends on PHP itself, so that means
if we install this package, we’ll get the PHP plugin as well as PHP itself.

Another method of searching for a package (if you have a web browser available) is to connect to the
Ubuntu Packages Search page at https://packages.ubuntu.com/, where you can navigate through the
packages from their database for any currently supported version of Ubuntu. You won’t always have
access to a web browser while working on your servers, but, when you do, this is a very useful way to
search through packages, view their dependencies, descriptions, and more.

Using the apt search command, as well as the snap find command, should get you quite far in the
process of determining the name of the packages you want to install. Package management skills come
over time, so don’t expect to automatically know which packages to install right away. When in doubt,
just perform a Google search, research the documentation of the software you want to run, and learn
how to install it in Ubuntu. Typically, the instructions will lead you to the correct commands to use.
The examples we’ll go over during the course of this book will guide you through the most common
use cases for Ubuntu Server.

https://packages.ubuntu.com/

Chapter 3 75

At this point, we should have a solid understanding of the different types of packages available and
how to manage them. However, it’s sometimes the case that we need to run software on our server for
which there is no package available within the standard repositories. Therefore, in the next section,
we’ll learn how to add additional repositories from which to install software.

Managing package repositories
Often, the repositories that come pre-installed with Ubuntu will suffice for the majority of the Debian
packages you’ll install via APT. Every now and then, though, you may need to install an additional
repository in order to take advantage of software not normally provided by Ubuntu, or versions of
packages newer than what you would normally have available. Adding additional repositories allows
you to subscribe to additional sources of software and install packages from them in the same way as
you would from any other source.

Adding additional repositories should be considered a last resort, however. When you install an
additional repository, you’re effectively trusting the author of that repository with your organization’s
server. Although I haven’t ever seen this happen first-hand, it’s theoretically possible for authors of
software to include back doors or malware in software packages (intentionally or unintentionally),
and then make them available for others via a software repository. Therefore, you should only add
repositories from sources that you have reason to trust.

In addition, it sometimes happens that a maintainer of a repository simply gives up on it and disappears.
This I have seen happen first-hand. In this situation, the repository may go offline (which would show
errors during apt transactions, indicating that it’s not able to connect to the repository), or worse, the
repository stays online, but security updates are never made available, causing your server to become
vulnerable to attack. Sometimes, you just don’t have a way around it. You need a specific application
and Ubuntu doesn’t offer it by default. Your only option may be to compile an application from source
or add a repository. The decision is yours, but just keep security in mind whenever possible. When
in doubt, avoid adding a repository unless it’s the only way to obtain what you’re looking for. If you
do add an additional repository and you haven’t seen packages from it updated in a decent amount of
time, consider that a red flag and investigate whether or not the repository is abandoned. Repositories
that are abandoned should be removed, and an alternative used in its place.

Adding additional repositories
Software repositories are essentially URLs in a text file, stored in one of two places. The main Ubuntu
repository list is stored in /etc/apt/sources.list. Inside that file, you’ll find a multitude of repositories
for Ubuntu’s package manager to pull packages from. In addition, files with an extension of .list
are read from the /etc/apt/sources.list.d/ directory and are also used whenever you use apt. I’ll
demonstrate both methods.

A typical repository line in either of these two files will look similar to the following:

deb http://us.archive.ubuntu.com/ubuntu/ jammy main restricted

Managing Software Packages76

The first section of each line will be either deb or deb-src, which references whether the apt command
will find binary packages (deb) or source packages (deb-src) there. Next, we have the actual URL that
apt will use in order to reach the repository. In the third section, we have the codename of the release;
in this case, it’s jammy (which refers to the codename for Ubuntu 22.04, Jammy Jellyfish).

If you weren’t already aware, the codename for each Ubuntu release is based on an animal. Often, the
animal chosen for a release will be rare. For example, the previous LTS release featured the fossa, which
is an animal from Madagascar that somewhat resembles a cat but with curved ears. This time around,
the chosen animal is the jellyfish, which I’m sure the majority of my readers are already familiar with.

Continuing, the fourth section of each repository line refers to the Component, which references whether
or not the repository contains software that is free and open source, and is supported officially by
Canonical (the company that oversees Ubuntu’s development). The component can be main, restricted,
universe, or multiverse. Repositories with a main component include officially supported software.
This generally means that the software packages have source code available, so Ubuntu developers are
able to fix bugs. Software marked restricted is still supported but may have a questionable license.
universe packages are supported by the community, not Canonical themselves. Finally, multiverse
packages contain software that is neither free nor supported, which you would be using at your own risk.

As you can see from looking at the /etc/apt/sources.list file on your server, it’s possible for a
repository line to feature software from more than one component. Each repository URL may include
packages from several components, and the way you differentiate them is to only subscribe to the
components you need for that repository. In our previous example, the repository line included both
main and restricted components. This means that, for that particular example, the apt utility will
index both free (main) and non-free (restricted) packages from that repository.

You can add new repositories to the /etc/apt/sources.list file (and it will function just fine), but
that’s not typically the preferred method. Instead, as I mentioned earlier, apt will scan the /etc/apt/
sources.list.d/ directory for text files ending with the .list extension. These text files are formatted
the same as the /etc/apt/sources.list file in the sense that you include one additional repository
per line, but this method allows you to add a new repository by simply creating a file for it, and you
can remove the repository by simply deleting that file.

This is safer than editing the /etc/apt/sources.list file directly, since there’s always a chance you
can make a typo and disrupt your ability to download packages from even the official repositories.

In addition, you may need to install a GNU Privacy Guard (GnuPG) key for a new repository, but this
process differs from one application to another. Typically, the documentation will outline the entire
process. This key basically protects you in that it makes sure that you’re installing signed packages.
Not all developers protect their applications this way, but it’s definitely a good thing to do.

Once you have the repository (and possibly the key) installed on your server, you’ll need to run the
following command to update your package index:

sudo apt update

Chapter 3 77

As mentioned earlier in this chapter, this command updates your local cache as to which packages
are available on the remote server. APT is only aware of packages that are in its database, so you will
need to sync this with that command before you’ll be able to actually install the software contained
within the repository.

Adding Personal Package Archives
On the Ubuntu platform, there also exists another type of repository, known as a Personal Package
Archive (PPA). PPAs are essentially another form of APT repository, and you’ll even interact with their
packages with the apt command, as you would normally. PPAs are usually very small repositories,
often including a single application that serves a single purpose. Think of PPAs as mini-repositories.
A PPA is common in situations where a vendor doesn’t make their software available with their own
repository and may only make their application available in the form of source code you would need
to manually download, compile, and install. With the PPA platform, anyone can compile a package
from source and easily make it available for others to download.

PPAs suffer from the same security concerns as regular repositories (you need to trust the vendor and
so on), but are a bit worse considering that the software typically isn’t audited at all. In addition, if
the PPA was to ever go down, you’d stop getting security updates for the application you install from
it. Only use PPAs when you absolutely need to.

There is one use case for PPAs that may be compelling, specifically for a server platform that standard
repositories aren’t able to handle very well, and that is software versioning. As I mentioned earlier, a
major server component such as PHP or MySQL may be locked to a specific major version with each
Ubuntu Server release. What do you do if you need to use Ubuntu Server, but the application you need
to run is not available in the version your organization requires? In the past, you would literally need
to choose between the distribution and the package, with some organizations even using a different
distribution of Linux just to satisfy the need to have a specific application at a specific version. You
can always compile the application from source (assuming its source code is available), but that
can cause additional headaches in the sense that you’d be responsible for compiling new security
patches yourself whenever they’re made available. PPAs potentially give you access to applications
not normally available in the default repositories, and/or access to newer versions of packages than
what is normally provided. This gives you, the server administrator, the ability to choose the approach
that is best for your goal.

PPAs are generally added to your server with the apt-add-repository command. The syntax generally
uses the apt-add-repository command, with a colon, followed by a username, and then the PPA
name. The following command is a hypothetical example:

sudo apt-add-repository ppa:username/myawesomesoftware-1.0

To begin the process, you would start your search by visiting Ubuntu’s PPA website, which is available
at https://launchpad.net/ubuntu/+ppas. There, you can search among the available PPAs.

https://launchpad.net/ubuntu/+ppas

Managing Software Packages78

Before adding a PPA to your server, it’s best to first research whether or not it’s being maintained well.
For example, if the PPA hasn’t had any updated packages in a very long time, that’s cause for concern—
security fixes are fairly common with most packages. If a package isn’t being regularly updated and
has therefore gone “stale,” it may be best to avoid it as it may cause more harm than good.

Once you find a PPA you would like to add to your server, you can add it simply by finding the name
of the PPA and then adding it to your server with the apt-add-repository command.

You should take a look at the page for the PPA, though, in case there are different instructions. For the
most part, the apt-add-repository command should work fine for you. Each PPA typically has a set
of instructions attached, so there shouldn’t be any guesswork required here.

So, what exactly does the apt-add-repository command do? Honestly, it’s not all that amazing. When
you install a PPA, it’s essentially automating the process of adding a repository file to your /etc/apt/
sources.list.d directory and installing its key. Therefore, you can uninstall a PPA by simply deleting
its file.

PPAs are a very useful feature if harnessed with care. PPAs offer Ubuntu a flexible way of adding
additional software that wouldn’t normally be made available, though you will need to keep an eye
on such repositories to ensure they are properly patched when vulnerabilities arise and are used only
when absolutely necessary. Always prefer packages from Ubuntu’s default repositories as well as Snaps,
but PPAs offer you another option in case you can’t find what you need anywhere else.

After you’ve maintained a server for a while, or finished setting it up for a particular goal, you’ll have
installed a plethora of packages to suit its purpose. Exporting a list of installed packages can make
it easier to rebuild a server should the need arise, and we’ll look at one method of doing that in the
next section.

Backing up and restoring Debian packages
As you maintain your server, your list of installed packages will grow. If, for some reason, you needed
to rebuild your server, you would need to reproduce exactly what you had installed before, which
can be a pain. It’s always recommended that you document all changes made to your server via a
change control process, but, at the very least, keeping track of which packages are installed is an
absolute must. In some cases, a server may only include one or two extra packages in order to meet
its goal, but, in other cases, you may need an exact combination of software and libraries in order to
get things working like they were. Thankfully, the dpkg command allows us to export and import a
list of packages to install.

To export a list of installed packages, we can use the following command:

dpkg --get-selections > packages.list

This command will dump a list of package selections to a standard text file. If you open it, you’ll see
a list of your installed packages, one per line. A typical line within the exported file will look similar
to the following:

tmux install

Chapter 3 79

With this list, we can import our selections back into the server if we need to reinstall Ubuntu Server,
or into a new server that will serve a similar purpose. First, before we manage any packages, we
should update our index:

sudo apt update

Next, we’ll need to ensure we have the dselect package installed. The dselect package provides us
with additional features when managing Debian packages. Its finer points are beyond the scope of
this chapter, but for our current goal, we can use it to restore packages from our exported list. At your
shell prompt, type which dselect and you should see output similar to the following:

/usr/bin/dselect

If you don’t see the output, you’ll need to install the dselect package with apt:

sudo apt install dselect

Once that’s complete, you can now import your previously saved package list, and have the missing
packages reinstalled on your server. The following commands will complete the process:

sudo dselect update
sudo dpkg --set-selections < packages.list
sudo apt-get dselect-upgrade

Normally, we simply use apt instead of apt-get nowadays, but oddly enough, the dselect-upgrade
command only works with apt-get.

After you have run those commands, the packages that are contained in your packages list but aren’t
already installed will be installed once you confirm the changes. This method allows you to easily
restore the packages previously installed on your server, if for some reason you need to rebuild it, as
well as setting up a new server to be configured in a similar way to an existing one.

Now that we have an understanding of how to export and import a list of installed packages, we can
also take a look at how to clean up unneeded packages to ensure our server is as free as possible from
unnecessary bloat.

Cleaning up orphaned apt packages
As you manage packages on your server, you’ll eventually run into a situation where you’ll have packages
on your system that are installed but not needed by anything. This occurs either when removing a
package that has dependencies, or when the dependencies on an installed package change. As you’ll
remember, when you install a package that requires other packages, those dependencies are also
installed. But if you remove the package that required them, the dependencies will not be removed
automatically.

Managing Software Packages80

To illustrate this situation, if I remove the apache2 package from one of my servers, I will see the
following extra information if I then try to install something else:

Figure 3.5: Output with orphaned packages shown

In this example, I removed apache2 (that was done before the screenshot was taken), then I went on
to install tmux. The package I was trying to install is arbitrary; the important part is the text you see in
the screenshot where it says The following packages were automatically installed and are no
longer required. Basically, if you have orphaned packages on your system, Ubuntu will remind you
periodically as you use the APT suite of tools. In this case, I removed apache2 so all of the dependencies
that were installed to support the apache2 package were no longer needed.

In the screenshot, I’m shown a list of packages that APT doesn’t think I need anymore. It may be
right, but this is something we would need to investigate. As instructed in the output, we can use the
apt autoremove command as root or with sudo to remove them. This is a great way of keeping our
installed packages clean but should be used with care. If you’ve just recently removed a package, it’s
probably safe to do the cleanup manually.

Although we haven’t walked through updating packages (we’ll do that in Chapter 21, Securing Your Server),
a situation that may come up later is one in which you have outdated kernels that can be cleaned with
the autoremove option. These will appear in the same way as the example orphans I was shown in
the previous screenshot, but the names will contain linux-image. Take care with these; you should
never remove outdated kernels from your server until you verify that the newly installed kernel is
working correctly and the server doesn’t exhibit any unwanted or unexpected behavior. Generally, you
would probably want to wait at least a week before running apt autoremove when kernel packages
are involved.

When it comes to other packages, they are generally safe to remove with the apt autoremove command,
since the majority of them will be packages that were installed as a dependency of another package
that is no longer present on the system. However, double-check that you really do want to remove each
of the packages before you do so. You can always reinstall a package if you didn’t mean to remove it,
and as an added benefit, if you reinstall a package that was marked for auto-removal, it won’t show
up in the output as an orphan package in the future.

Chapter 3 81

As you’ve seen so far, there are a lot of options when it comes to managing software in Ubuntu, and
as an administrator, you are able to choose the best possible method for your goal. Another special
type of update is available, that can improve hardware support in a situation where your hardware is
newer than your Ubuntu version, or provide compatibility for hardware that didn’t previously have
support available.

Taking advantage of hardware enablement updates
One issue in the Linux industry has been hardware support. This is problematic in various Linux
distributions because you may find yourself in a situation where you’re using a server (or even a desktop
or laptop) that was released with the latest processor and chipset, but no newer version of your Linux
distribution has been released yet that includes updated drivers that support it. Unlike platforms such
as Windows, hardware drivers are typically built right into the Linux kernel. So, if you have an old
release (which would contain an older kernel), you might be out of luck for hardware support until
the next version of your Linux distribution is released.

Thankfully, Ubuntu has come up with a system to address this problem, and it’s one of the many things
that set it apart from other distributions. Ubuntu features a set of updates known as the hardware
enablement (HWE) stack, which is an exclusive feature of long-term support (LTS) releases. We
discussed the difference between LTS and regular releases back in Chapter 1, Deploying Ubuntu Server.
HWE updates are optional, but they add additional compatibility with newer hardware that was released
after the current LTS version was made available. A new HWE stack typically includes a new kernel
and driver packages. However, since drivers are often built right into the Linux kernel, you’ll also get
added support for things other than new video cards as well, such as newly released network cards.

HWE updates are generally made available from the second point release of an LTS version, and
then again with each subsequent point release until the next LTS release becomes available. The new
compatibility stack is backported from the most recent non-LTS release, which means that you get
the same compatibility of the latest non-LTS release while being able to stay on an LTS release. For
example, when Ubuntu 20.04.2 was released on February 4, 2021, it contained the kernel and driver
packages backported from Ubuntu 20.10. This means that you were able to take advantage of the
newer hardware support of Ubuntu 20.10 while being able to remain on 20.04 LTS and benefit from
the longer support cycle of the LTS release.

At the time of writing, Ubuntu 22.04 is the latest LTS release of Ubuntu, so hardware enablement hasn’t
been added yet. Historically, it’s most likely the case that hardware enablement will play out in 22.04
LTS the same way as it has in previous releases. If that’s the case, then the updated packages will be
made available once Ubuntu 22.04.2 is released.

Once the new HWE stack is made available, you can choose to install it or to remain on the original
22.04 kernel with no change. On the desktop version of Ubuntu, people that enjoy computer games
can really benefit from these updates, as the new drivers enable better performance when it comes
to video cards and support newer gaming hardware. When it comes to the scope of this book, the new
hardware enablement benefits us a bit less than desktop users. The reason is that if your server is
running fine with no issues, then there really isn’t any reason to install the new hardware enablement
unless the updated kernel contains new features you’d like to take advantage of.

Managing Software Packages82

A frustrating experience that sometimes comes up is having Ubuntu complain that there are no network
cards available, even though you do actually have one. I’ve seen this most often when purchasing a new
physical server that contains the latest hardware. It can be very frustrating to power on a brand-new
server, only to realize you can’t get a network connection at all. This is a classic symptom of needing
an updated compatibility stack. Perhaps your network card was released after the release date of the
current Ubuntu release. This scenario is a good example of why hardware enablement updates exist,
and why you will probably end up using them sooner or later.

If you don’t opt in to the HWE updates, your server will always have the same hardware enablement
(kernel, drivers, and so on) as it did when your installed LTS release was first published. In that case,
your kernel and related packages will only be updated when you install new security updates. At a later
date, you can opt in to HWE updates manually if you wish. Generally, you only do this if you’ve added
new hardware to a physical server that requires a new kernel. If your server is working perfectly fine
and you haven’t added new hardware, there’s probably no reason to install a new HWE stack.

If you do decide to utilize these updates, there are two ways to do so. You can opt in to the newer HWE
stack while installing Ubuntu Server, or you can manually install the required packages. At the time
of writing, Ubuntu 22.04 is new to the scene, so it remains to be seen if the updated packages will be
made available with 22.04.2, but it’s very likely given Ubuntu’s history. The following screenshot shows
the first screen of the installer for Ubuntu 20.04.4. Assuming Ubuntu 22.04 follows the same plan,
you’ll most likely see an option such as the one in the following screenshot once 22.04.2 is released:

Figure 3.6: Main menu of the installer for Ubuntu 20.04.4

Notice the Install Ubuntu Server with the HWE kernel option. If you choose this option, then your
installation of Ubuntu Server will contain the new HWE packages immediately.

If you’ve already installed Ubuntu Server and you’d like to install the HWE updates afterward, you can
do so from the terminal. In Ubuntu 20.04, for example, you were able to switch to the HWE kernel
with the following command:

sudo apt install --install-recommends linux-generic-hwe-20.04

Chapter 3 83

When Ubuntu 22.04 releases its newer HWE stack, a similar command will likely be used to install
it. If you need a newer HWE kernel, refer to the instructions in Ubuntu’s documentation pages when
that time comes.

Summary
In this chapter, we have taken a crash course in the world of package management. As you can see,
Ubuntu Server offers an amazing number of software packages and various tools that we can use to
manage them. We began the chapter with a discussion of how package management with Ubuntu works,
then we worked through installing packages, searching for packages, and managing repositories. Snap
packages were also covered, which is a newer technology that aims to enhance software distribution
on Ubuntu.

In Chapter 4, Navigating and Essential Commands, we’ll take a look at foundational commands for
navigating the Linux Shell, understanding the filesystem layout, and more.

Relevant video
•	 Linux Crash Course - APT (LearnLinuxTV): https://linux.video/lcc-apt

Further reading
•	 LTSEnablementStack (Ubuntu wiki): https://learnlinux.link/lts-es
•	 Ubuntu Server Guide: https://ubuntu.com/server/docs

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/lcc-apt
https://learnlinux.link/lts-es
https://ubuntu.com/server/docs
https://packt.link/LWaZ0

4
Navigating and Essential
Commands

At this point in our journey, we’ve already covered a lot of ground—we’ve learned how to deploy an
Ubuntu server, how to manage users, and most recently, how to manage software packages. Before
we go too far, we should take a moment to learn some important concepts and commands that will
allow us to build more of the foundational knowledge that will serve us well for the remainder of the
book and beyond. These foundational concepts include core Linux commands for navigating the shell,
the Linux filesystem layout, viewing the contents of files, and even checking on log files. Specifically,
this discussion will include:

•	 Learning essential Linux commands
•	 Understanding the Linux filesystem layout
•	 Viewing the contents of files
•	 Viewing application log files

Let’s take some time to learn some essential Linux commands that will help strengthen our com-
mand-line skills.

Learning essential Linux commands
Building a solid competency on the command line is essential and effectively gives any system ad-
ministrator or engineer superpowers. Our new abilities won’t allow us to leap tall buildings in a single
bound but will definitely enable us to execute terminal commands as if we’re command-line ninjas.
While we won’t completely master the art of using the command line in this section (that can only
come with years and experience), we will definitely become more confident.

First, let’s talk about moving from one place to another within the Linux filesystem. Specifically, by
“Linux filesystem,” I’m referring to the default structure of the various folders (also referred to as “di-
rectories”) contained within your Ubuntu installation. The Linux filesystem contains many important
directories, each with its own designated purpose, which we’ll talk about in more detail later in this
chapter.

Navigating and Essential Commands86

Before we can explore that further, we’ll need to learn how to navigate from one directory to anoth-
er. The first command we’ll cover in this section relative to navigating the filesystem will clarify the
directory you’re currently working from. For that, we have the pwd command. This stands for print
working directory and shows you where you currently are in the filesystem. If you run it, you may
see output such as this:

Figure 4.1: Viewing the current working directory

In this example, when I ran pwd, the output informed me that my current working directory is /home/
jay. This is known as your home directory and, by default, every user has one (as we discussed in
Chapter 2, Managing Users and Permissions). This is where all the files for your user account will reside
by default. Sure, you can create files anywhere you’d like, even outside your home directory if you
have permission to do so or you use sudo. But just because you can doesn’t mean you should. As you’ll
learn in this chapter, the Linux filesystem has a designated place for just about everything. But your
home directory, located at /home/<username>, is yours. You own it, you control it—it’s your home on
the server. In the early 2000s, Linux installations with a graphical user interface even depicted your
home directory with an icon of a house.

Typically, files that you create in your home directory will have permission strings similar to this:

-rw-rw-r-- 1 jay jay 0 Jul 5 14:10 testfile.txt

We’ve discussed permissions and gone over how to read a permission string in Chapter 2, Managing
Users and Permissions, but you can see that by default, files you create in your home directory are owned
by your user, your group, and are readable by all three categories (user, group, and other).

To change our current directory and navigate to another, we can use the cd command along with a
path we’d like to move to:

cd /etc

Now, I haven’t gone over the file and directory layout yet, so I just randomly picked the /etc directory.
The forward slash at the beginning designates the beginning of the filesystem. More on that later. Now,
we’re in the /etc directory, and our command prompt has even changed as well:

Figure 4.2: Command prompt and pwd command after changing a directory

Chapter 4 87

As you could probably guess, the cd command stands for change directory, and it’s how you move your
working directory from one to another while navigating around. You can use the following command,
for example, to return back to the home directory:

cd /home/<user>

In fact, there are several ways to return home, a few of which are demonstrated in the following
screenshot:

Figure 4.3: Other ways of navigating to the home directory

The first command, cd -, doesn’t actually have anything to do with your home directory specifically.
It’s a neat trick to return you to whatever directory you were in most recently. For me, the cd – com-
mand took me to the previous directory I was in, which just so happened to be /home/jay. The second
command, cd /home/jay, took me directly to my home directory since I called out the entire path.
The last command, cd ~, also took me to my home directory. This is because ~ is shorthand for the full
path to your home directory, so you don’t really ever have to type out the entire path to /home/<user>.
You can just refer to that path simply as ~.

Another essential command is ls. The ls command lists the contents of the current working directory.
We probably don’t have any content in our home directory yet. But if we navigate to /etc by running
cd /etc, as we did earlier, and then execute ls, we’ll see that the /etc directory has a number of files
in it. Go ahead and try it yourself and see:

cd /etc
ls

We didn’t actually have to change our working directory to /etc just to list the contents. We could’ve
just executed the following command:

ls /etc

Even better, we can run:

ls -l /etc

Navigating and Essential Commands88

This gives us the contents in a long list, which I think is much easier to understand. It will show each
directory or file entry on its own line, along with the permission string. But, you probably already
remember ls as well as ls -l from back in Chapter 2, Managing Users and Permissions, so I won’t go
into too much more detail here. The -l portion of the ls command in that example is known as an
argument. I’m not referring to an argument such as the ever-ensuing debate in the Linux community
over which command-line text editor is the best between Vim and Emacs (it’s clearly Vim). Instead,
I’m referring to the concept of an argument in shell commands that allow you to override the defaults,
or feed options to the command in some way, such as in this example, where we format the output
of ls to be in a long list.

The rm command is another one that we touched on in Chapter 2, Managing Users and Permissions,
when we were discussing manually removing the home directory of a user that was removed from
the system. So, at this point, you’re probably well aware of that command and what it does (it removes
files and directories). It’s a potentially dangerous command, as you could use it to accidentally remove
something that you shouldn’t have. In that chapter, we used the following command to remove the
home directory of user dscully:

rm -r /home/dscully

As you can see, we’re using the -r argument to alter the behavior of the rm command, which, by de-
fault, doesn’t remove directories but only files. The -r argument instructs rm to remove everything
recursively, even if it’s a directory. The -r argument will also remove subdirectories of the path as
well, so you’ll definitely want to be careful with this command. As I’ve mentioned earlier in the book,
if you use sudo with rm, you can hypothetically delete your entire Ubuntu installation!

Another option offered by rm is the -f argument, which is short for force, and it tells rm not to prompt
before removing things. This argument won’t be needed as often, and use cases for it are outside the
scope of this chapter. But keep in mind that it exists, should you need it.

Another foundational command that’s good to know is touch, which actually serves two purposes.
First, assuming you have permission to do so in your current working directory, the touch command
will create an empty file if it doesn’t already exist. Second, the touch command will update the mod-
ification time of a file or directory if it does already exist:

Figure 4.4: Experimenting with the touch command

Chapter 4 89

To illustrate this, in the related screenshot, I ran several commands. First, I ran the following com-
mand to create an empty file:

touch testfile.txt

That file didn’t exist before, so when I ran ls -l afterward, it showed the newly created file with a
size of 0 bytes. Next, I ran the touch testfile.txt command again a minute later, and you can see
in the screenshot that the modification time went from 15:12 to 15:13.

When it comes to viewing the contents of a file, we’ll get to that later on in this chapter. And there are
definitely more commands that we’ll need to learn to build the basis of our foundation. But for now,
let’s take a break from the foundational concepts to understand the Linux filesystem layout better,
which is pretty much mandatory for some of the commands we’ll learn later.

Understanding the Linux filesystem layout
As I mentioned earlier, every directory in a Linux installation has a designated purpose. It isn’t a hard
rule that you have to follow, more of a strong recommendation for where certain things are supposed
to go.

You can certainly go against the recommendations; ultimately, you have full control over your instal-
lation. But, if you make it a habit to place files in strange locations, you may annoy your colleagues.
In this section, we’ll go over the most common directories and talk about their purpose.

The term filesystem itself can be somewhat confusing in the Linux world because it can refer to two
different things—the default directory structure, as well as the actual filesystem we choose when
formatting a volume such as a hard drive or flash drive (ext4, XFS, and so on). Specific to this section,
we’re going to take a quick look at the Linux filesystem in the context of the default directory structure.

In Linux (Ubuntu uses the Linux kernel and related utilities, so therefore it is a distribution of Linux),
the filesystem begins with a single forward slash, /. This is considered the beginning of the filesystem,
and directories and sub-directories branch out from there. For example, consider the /home directory.
This directory exists at the root level of the filesystem, which you can see from the fact that it begins
with a forward slash. The home directory on my system is /home/jay, which means that it’s the jay
directory, which is inside the home directory, and that directory is at the beginning of the filesystem.

This is confusing at first but becomes very logical once you become accustomed to it. If you’re familiar
with Microsoft Windows, then you can technically think of / as the C: drive. It’s actually a bit more
complex than that, but if we forego some of the quirks, that comparison works. To really bring this
home, use the ls command against several directories on your server. If you execute ls /, you will
see all of the directories at the root of the filesystem.

Navigating and Essential Commands90

You’ll see the home directory among the results, among many others. For those of you who prefer a
more visual representation, the following screenshot shows an example filesystem:

Figure 4.5: Diagram of a portion of a typical Linux filesystem

As you can see, the Linux filesystem resembles a tree, with a main branch that extends outward and
directories branch out from one another. This default directory structure is part of the Filesystem
Hierarchy Standard (FHS), which is a set of guidelines that defines how the directory structure is laid
out. This specification defines the names of the directories, where they are located, and what they
are for. Distributions will sometimes go against some of the definitions here, but for the most part,
follow it fairly closely. This is why you may see a very similar (if not the same) directory structure on
distributions of Linux other than Ubuntu.

So, why is this important? As I mentioned, each directory generally has a purpose. There are some
debates about the default layout from time to time, and some changes are made every now and then.
But in regard to Linux, the filesystem layout tends to change less frequently than other things do.

A full walkthrough of the FHS would be astronomical, but I have included a link to this specification
at the end of the chapter should you decide to read more about it. There are some directories you
definitely should know, however. Here are some of the more important ones.

Directory Purpose

/ The beginning of the filesystem; all directories are underneath this

/etc System-wide application configuration

/home User home directories

/root The home directory for root (root doesn’t have a directory under /home)

/media For removable media, such as flash drives

/mnt For volumes that are intended to stay mounted for a while

/opt Additional software packages (some programs are installed here, not as common)

Chapter 4 91

/bin Essential user binaries (ls, cp, and so on)

/proc Virtual filesystem for OS-level components

/usr/bin A majority of user commands

/usr/lib Libraries

/var/log Log files

The /etc directory deserves some additional discussion, as you’ll no doubt be working with it a lot.
This directory, as mentioned in the preceding table, holds configuration files for applications that
are intended to be respected system-wide. For example, if you’re running the OpenSSH daemon on
your server, you’re listening for connections via port 22 by default. (Don’t worry, we’ll discuss these
individual concepts in further chapters.) The configuration file for the OpenSSH server is located in
the /etc/ssh directory. Since OpenSSH is a service that runs on the system as a background process,
its configuration is stored in the sshd_config file inside that directory. If you remove the package
responsible for providing OpenSSH, the configuration is retained in that file (removing packages
doesn’t also remove config files by default), so if you go to reinstall OpenSSH later, you’ll have the
same configuration the next time. If we want to wipe out the configuration while uninstalling a pack-
age, we can use the --purge option with the apt remove command to do so, as we saw in Chapter 3,
Managing Software Packages.

Other directories of importance will be discussed as we progress through the topics in this book. Don’t
worry if some of this doesn’t make sense right now; it will come with time. The main point here is
that there are many directories, each having its own purpose. If you want to know the purpose of a
particular directory, consult the FHS. If you’re curious where you should place something on a server,
also consult the FHS. But again, don’t worry too much about doing research outside of this book, as
we’ll cover the necessary topics as we go along.

We now have a better understanding of the default filesystem layout and the purpose of some common
directories. In the next section, we’ll explore how we can view the contents of files stored in those
directories.

Viewing the contents of files
The Linux filesystem contains many directories and files. In the case of files, we need to learn how
to read and manipulate them to round out our knowledge. We’ll cover more topics surrounding file
management in the next chapter. For now, we can benefit by taking a look at how to view the content
of existing files.

We can print the contents of a file to the screen with the cat command, along with a filename as an
argument. The following command, for example, can be used to view the contents of testfile.txt in
our current working directory, which we created earlier in the chapter when we discussed the touch
command. Sure, this exercise is rather pointless since that file is empty, but it offers a good first example:

cat testfile.txt

Navigating and Essential Commands92

There’s no output, since again, the file is empty. So, let’s instead take a look at a more practical example.
Here’s a file we can use cat against that actually does have content inside:

cat /etc/os-release

The output of this command is as follows:

Figure 4.6: Viewing the contents of /etc/os-release

The /etc/os-release file is one that exists on many distributions. It’s a special file that gives you some
information about the distribution of Linux that’s currently installed. If you were to connect to a Linux
server and wanted to know which distribution it was running, viewing the contents of this file is one way
to find out. You can also view some of the same info in abbreviated form via the following command:

lsb_release -a

That command also works on various distributions, but I prefer the /etc/os-release file because it
contains more information. Regardless, the entire point of this exercise is to demonstrate that the
cat command allows you to view the contents of a file. More or less, there are other commands that
also let you do the same thing. And I mean that literally—you can also try viewing the contents of
/etc/os-release with more or less:

more /etc/os-release
less /etc/os-release

The more command allows you to more easily view larger files, so the benefit won’t be as immediately
apparent with a file as short as /etc/os-release. If you use more to view a longer file, it will stop the
output when it fills the screen, and allow you to press Enter to advance to the next line.

The less command allows you to do the same thing, but also allows you to not only use your arrow
keys in addition to Enter to view more output; it also allows you to advance forward or backward as
well. So essentially, the less command gives you more features than the more command does.

Chapter 4 93

In addition, we also have the grep command at our disposal. It’s not typically used to simply view the
contents of a file, but it’s definitely a great command to know that can help you view specifically what
you want to view, rather than the entire file.

If you chose to install the OpenSSH server when you first installed Ubuntu Server, you should have
the config file for it in your installation, and you can view the contents of that file with cat as we
normally would:

cat /etc/ssh/sshd_config

Of course, that’s going to dump the contents of that file onto our screen, and the file is many more
lines than what the typical monitor is able to display all at once. We might be interested in a particular
line or word, so we’ll need to be able to narrow down the file to what we actually care about. We’ll talk
about the OpenSSH server in more detail in Chapter 10, Connecting to Networks, so don’t worry about
what this configuration file means yet. Let’s just say, hypothetically, we’re only interested in the port
that OpenSSH is listening on. We can use the grep command to try and print only the lines of the /
etc/ssh/sshd_config file that pertain to that specific configuration:

grep Port /etc/ssh/sshd_config

This command will produce the following output:

Figure 4.7: Viewing the contents of the /etc/ssh/sshd_config file with grep to find lines containing “Port”

Essentially, what we’re doing is instructing grep to print only the lines of the /etc/ssh/sshd_config
file that contain the string Port. In the screenshot, a single line contained a match for that string, so it
displayed. That output is certainly better than scrolling through the 123 lines of text in the file, when
we’re only interested in lines pertaining to the port.

By default, grep is case-sensitive. This means that if we were to use grep to find lines matching “port”
(with a lowercase P), we would get no output at all. We can simply add the -i argument to make the
search case-insensitive.

It’s very common to see the grep command paired with another command, such as cat:

cat /etc/ssh/sshd_config | grep Port

That’s a perfectly valid command and will do the same thing. However, it’s fairly redundant. We’ll
get into the concept of redirecting output in the next chapter, but essentially this command takes the
output of the cat command and redirects it as input to the grep command. Using cat to first print out
the file and then have grep grab the contents of that file and search it for a string is a two-step process
where only one step is required. But again, it’s still a valid command.

Navigating and Essential Commands94

To this day, I’ll personally use the cat command with grep to do the same thing out of habit, as this was
how all new Linux users were taught back when I started. You’ll even see me do this in my YouTube
videos—old habits are hard to break!

Log files are a great source of information about what’s going on in the background of your server,
and are especially useful for troubleshooting. We’ll now transition into a discussion on viewing these
files and some relevant commands pertaining to logging.

Viewing application log files
In the last section of this chapter, let’s explore log files a bit, as they bring several concepts that we’ve
discussed full circle. We went through an overview of the default directory layout, practiced viewing
files, and we learned how to search files for strings. We’ll discuss log files in greater detail later on in
the book, but we can use all of these concepts to take an initial look at viewing log files now.

If you recall, during the discussion of the Linux filesystem layout earlier in this chapter, there was a
table showing some of the most common directories that exist. Among the items in that table, I called
out the /var/log directory. While logging is transitioning to a different style (more on that in Chapter
22, Troubleshooting Ubuntu Servers), we’ll have a series of logs in the /var/log directory. Go ahead and
use the ls command yourself, and you’ll see there are quite a few files there. While I won’t go through
all of them in this chapter, let’s take a look at /var/log/syslog.

The content of this file is going to have quite a few lines. This is the system log, which is used to view
informational messages about what’s going on in the background as Ubuntu runs on your server, and
will show warnings and errors as well. If you run into a problem where something isn’t working quite
right, you may see output in the system log that will provide you with some sort of error you can look
up in a search engine so you can try and find a resolution. For example, you can use grep to view any
lines that contain the search term Network if you’re having issues with your connection:

grep Network /var/log/syslog

That’s just a hypothetical example, but it may show lines that are relevant. Adjust your search term to
whatever you’re interested in finding.

This is also a good time to introduce you to the head and tail commands. These commands will show
the first ten or last ten lines of a file, respectively. This is useful for the /var/log/syslog file because
again, that file is quite large, and you may only be interested in certain lines. You can also adjust the
number of lines the head and tail commands show with the -n option with a desired number of lines.
For example, to view the last 100 lines of a file:

tail -n 100 /var/log/syslog

Perhaps even more useful is the -f option:

tail -f /var/log/syslog

Chapter 4 95

This allows you to follow (watch) a file in (almost) real time. With the -f option, the terminal will con-
tinue to display new lines in this file as they’re appended, so you can monitor the log file as someone
attempts to reproduce a problem, for example. You can press Ctrl + c on your keyboard to break out
of the follow mode and return back to the command prompt.

Of course, there are many more foundational commands and concepts that we can go over, but I think
that this is enough for now. In the next chapter, we’ll expand on this further. But for now, I recom-
mend you practice all of the concepts in this chapter until you’re familiar with them before we go on.

Summary
There are more Linux commands than you’ll ever be able to memorize. Most of us just memorize our
favorite commands and variations of commands, and you’ll develop your own menu of these com-
mands as you learn and expand your knowledge. In this chapter, we covered many of the foundational
commands that are, for the most part, essential. Commands such as grep, cat, cd, ls, and others were
explored this time around. The next chapter is essentially a continuation of this one, but I wanted to
split the foundational concepts into two chapters rather than one enormous one.

In the next chapter, we’ll expand our foundational knowledge with a deeper look at file management,
including editing files, input/output streams, and symbolic links, and we’ll even reveal the secret to
life itself. Well, maybe not the latter, but the next chapter will still be great. See you there!

Relevant video
•	 Linux Crash Course – Navigating the Linux Filesystem (LearnLinuxTV):

https://linux.video/lcc-navigating

Further reading
•	 Filesystem Hierarchy Standard: https://learnlinux.link/fhs-doc
•	 UsingTheTerminal: https://learnlinux.link/using-term

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/lcc-navigating
https://learnlinux.link/fhs-doc
https://learnlinux.link/using-term
https://packt.link/LWaZ0

5
Managing Files and Directories

In Chapter 4, Navigating and Essential Commands, we started looking deeper into Linux commands.
We went over the most essential commands and covered the filesystem layout, as well as various
methods to view the contents of files. In this chapter (as well as the next), we’ll continue to expand
on the command line and become more efficient while using the terminal. This time around, we’ll
expand a bit further on file management, take a look at input/output streams, and we’ll also develop
an understanding of symbolic links. Along the way, we will cover:

•	 Copying, moving, and renaming files and directories
•	 Editing files with the Nano and Vim text editors
•	 Input and output streams
•	 Using symbolic and hard links

Let’s begin the chapter by taking a look at some methods we can use to alter the files and directories
in the filesystem, such as copying and moving them.

Copying, moving, and renaming files and directories
At this point, you should know how to move around within the filesystem (commands such as cd),
inspect the contents of directories (ls), and even how to create empty files (the touch command). We
even know how to remove files as well, such as executing the rm command against a file or directory.
But until now, we haven’t looked at moving files around within your Ubuntu filesystem.

First, to make a copy of a file or directory, we use the cp command. Copying a file is fairly easy, and
such a command would look similar to the following:

cp file1 file2

In that example, file2 is created as an exact copy of file1. Copying a file is useful in many situations,
some of the most common of which are:

•	 Copying a file to a backup medium, such as an external drive or network share
•	 Creating a copy of a file before making a change, such as before editing a very important text file

Managing Files and Directories98

•	 Duplicating a log file for a point-in-time analysis

Let’s look at the last bullet point as another good example. We can capture a copy of the system log
and store it in our current working directory by executing the following command:

sudo cp /var/log/syslog /home/<username>/syslog

The cp command is fairly simple: we give it a path to a file to copy, and then we type the path to the
destination and desired filename. We also use sudo due to the fact that the syslog may not be readable
by normal users by default, depending on the configuration. In the case of this command, a copy of
the original syslog file will be saved in your current working directory.

For this particular example, log files are constantly being written to. It can sometimes be hard to
troubleshoot an issue that occurred during a certain time if the file is continually expanding. That’s
not the only reason though. We certainly wouldn’t want to make an accidental change to the log file
and risk contaminating it or losing important information.

The previous command can actually be simplified a bit:

sudo cp /var/log/syslog .

In that example, we removed the target path and name and replaced it with a period. The reason this
works is that the period represents our current working directory. This isn’t specific to the cp command
either. There actually is a directory named with a period in every directory, which is essentially a
pointer to the current directory. Therefore, if you’re already inside the directory you want the file to
be copied to, you don’t have to type the path. You don’t have to type the name either if you want the
name of the file to be the same as the source.

Copying files (as well as moving them, which we’ll look at next) is potentially destructive. If the
target path and name already exist, then the target will be overwritten. By default, you won’t see a
confirmation before the target file is overwritten. As with all commands, take care that you really want
to do whatever it is you’re telling the command-line interpreter to do.

When it comes to copying directories, the cp command by itself won’t do the trick:

sudo cp /var/log/apt .

The /var/log/apt directory contains log files that keep track of transactions performed with the apt
command. It can be useful to keep an eye on what your other admins are installing. When it comes
to this example though, the previous command will fail with the following error:

cp: -r not specified; omitting directory '/var/log/apt'

The error literally tells you what to do about it, and essentially the error is telling you that directories
are omitted by default. In order to copy directories, you’ll need to include the -r option. This stands
for recursive, which is an option you’ll see as a possibility for a handful of Linux commands. It tells the
command-line interpreter to not only grab the object at the path you specified but to do so recursively
and include child objects as well. Therefore, the following command will work:

sudo cp -r /var/log/apt .

Chapter 5 99

With that command, a local copy of the /var/log/apt directory will be stored in your current working
directory, along with the contents.

When it comes to moving a file or directory from one place to another, we use the mv command. The
syntax is almost exactly the same as the cp command. The difference is that instead of copying a file
or directory, we’re moving it. In that regard, it’s probably self-explanatory how it works. Consider the
following example commands:

mv file1 /path/to/new/directory/file1
mv file1 file2

With the first example, we’re assuming that file1 is in our current working directory. We’re grabbing
that file and moving it to /path/to/new/directory and giving it the same name of file1 in that new
directory. Just like with the cp command, we could’ve omitted the filename at the target, since it’s
staying the same. If the file already exists in the target directory with that name, it will be overwritten.
So, the mv command is also potentially destructive, but more so when compared to cp since you are
moving, instead of copying.

The second mv command is a bit more interesting, because in that example we’re renaming a file. In
Linux, there’s no dedicated rename command, so the mv command is used for that purpose. In fact, mv
is somewhat of a Swiss Army knife due to the fact it serves multiple purposes. With it, you can move
a file or directory, rename it, and also move a file to overwrite another file in a different location. It
all depends on the source and destination paths. If the target exists, it will be overwritten. If not, the
file will be renamed and/or moved to that path.

When managing files, you’ll certainly come to a situation where you need to manage multiple files
or directories. It’s worth noting that the cp command, as well as the mv command, can be used with
multiple objects at once; for example, if you have three directories, such as dir1, dir2, and dir3, and
you need to move them into a new sub-directory. You could execute three mv commands to move each
one separately, but you can also move all three with a single mv command:

mv dir1 dir2 dir3 /path/to/new/location

The same holds true with cp and with files; both cp and mv are set up to allow you to move or copy
multiple directories or files with a single command.

Now that we know how to move files around, we should also take a look at how to edit them. There
are many text editors available to us on the Ubuntu platform, with Nano and Vim being among the
most common. In the next section, we’ll go over the basics of both.

Editing files with the Nano and Vim text editors
Now that we know how to copy and move files, it would be useful to know how to edit them. There
are multiple forms of text editors for Ubuntu, some available in the command line, and others in
graphical environments such as the text editor in the desktop version.

Managing Files and Directories100

Some may feel that command-line text editors are more complicated than Graphical User Interface
(GUI) editors (and to be honest, they can be), but the main benefit is that you can use the same editor
regardless of whether or not you have a GUI. In a way, this means the non-graphical editors are a bit
more portable, and you can rely on them more. Almost all installations of Ubuntu will include the
nano text editor, and you can rely on that more often than something like a particular GUI editor being
available. In addition, the vim editor is another popular consideration. It’s a bit more advanced than
nano, but in my opinion, much more powerful. In the following sections, we’ll look at both nano and vim.

Editing with Nano
The nano editor, while more basic in terms of features, still has a fairly strong following. Actually, if
you haven’t already noticed, a person’s choice of editor can cause somewhat of a debate in the Linux
community. To launch the nano editor, it’s as simple as running the nano command. If you don’t provide
nano with a filename, it simply starts with an empty window, as shown in the following screenshot:

Figure 5.1: The nano text editor, with no file selected

You can start typing right away, and when you want to save the file, you can simply press Ctrl + o to do
so. On the bottom of the nano screen, you’ll see an overview of shortcuts, including the method for
saving the file I just mentioned (which it refers to as Write Out). As you can see then, Ctrl + x is how
you exit the editor and go back to the command line.

One trick that I love (which also works well with vim) is pressing t and then z while holding Ctrl when
you have nano open, which will make it disappear. Normally, you don’t have to press Ctrl and t in order
to background a process, but nano is the exception in this case.

Chapter 5 101

Effectively, it’s the same as minimizing it. You can bring the nano window back by executing fg, which
is short for foreground. The ability to background and foreground an application in the terminal is
part of process management, which is actually something we’ll talk about in Chapter 7, Controlling and
Managing Processes, but we’re giving you this tip ahead of time, to help you on your way! When it comes
to editing files, sometimes it makes sense to send the editor to the background and bring it back later.

As you can probably guess, you can also use the nano command, with a target path and filename, to
have the editor come up with a file already open. For example:

sudo nano /var/log/syslog

This command will result in the file opening in nano:

Figure 5.2: The nano text editor, with the syslog file open

To be fair, editing a log file directly is probably not a good idea in practice, but the example works.
The syslog is a file you may want to open and inspect, but it would be a good idea to check the size of
the syslog file with the ls -lh /var/log/syslog command to make sure it’s not excessively large in
size, which can slow down the server.

All of that aside, the takeaway here is that you can open a file with nano directly by simply providing
it with a path to something. Inside the editor window, you can move around with the arrow keys, just
like you would in a graphical editor. You can also search for a specific string of text, by pressing Ctrl
+ w for Where Is, as is mentioned in the list of actions near the bottom.

In addition, note the text in the screenshot that is highlighted in red. It’s simply telling us that we
don’t have access to edit the file. In that example, I didn’t use sudo because I didn’t intend on making
any changes to the file.

Managing Files and Directories102

Sometimes, I’ll open files in an editor that I don’t have write permission to make changes to, which
serves as a fail-safe in case I accidentally do make a change (I won’t be able to save the file without
sudo). To make a real change, I can close the file and reopen it with sudo.

Anyway, the nano editor is fairly simplistic. Is there more to it than that? Sure, but the most important
thing to know is how to open files, edit them, and save them, which we’ve covered in this section. Of
course, you can practice with the actions that are presented to you at the bottom of the window to go
beyond normal usage.

Now, let’s take a look at Vim.

Editing with Vim
Vim is my favorite editor, and the one I use most often. It’s a little on the advanced side, but it’s not to
the point where it’s frustrating. By default, it’s not actually installed. Personally, I prefer the vim-nox
package, which can be installed by executing the following command:

sudo apt install vim-nox

It really doesn’t matter which of the variations of vim you install. Each variation adds its own features.
In the case of vim-nox, it has built-in support for scripting languages but is not really all that different
from standard vim in other regards. The concepts you’ll learn here are not specific to this version. Just
like nano, the vim editor can be called by itself by entering the command vim with no options, or with a
path to a file, such as vim /home/myuser/myfile.txt. With no file chosen, vim will display its default
help text. It gives you some of the default commands, such as :q for quitting the editor:

Figure 5.3: The vim text editor, with no file open

Chapter 5 103

When you start vim, you start in command mode, which is one of several different modes the editor can
be in. In command mode, you can’t actually edit text. Command mode allows you to run commands,
as the name implies, which can allow you to manipulate text in really neat ways.

At first, the different modes of vim can be a bit confusing to newcomers. For me, I see it as somewhat of
a superpower. With vim, you have a mode for editing text and another dedicated mode for manipulating
it. When it comes to text manipulation, that’s one of the strongest features of vim. For an example of
this, consider the following hypothetical file:

Figure 5.4: The vim text editor, with a sample file

I don’t know why, but something about that file seems off to me. We’ll need to make a very important
correction to try to fix it. First, you can see from the screenshot that the editor was left in insert mode.
To do some text manipulation, we first need to press Esc to go back to command mode. Once there,
we can get ready to type a command. And the command we want to type is this one:

:%s/Windows/Linux/g

If you want to edit a file as you were already doing in nano, you’ll need to switch to insert
mode to do so. You can switch to insert mode by pressing the Insert key on your keyboard,
or the i letter key. Once you’re in insert mode, you can start typing as you normally would
in any other editor. You’ll move the cursor around with the arrow keys, and insert text
wherever you want. Outside of insert mode, you can also navigate with the h, j, k, and l
keys in place of the arrow keys (which some users actually prefer). To exit insert mode,
you can press Esc. That will bring you back to command mode.

Managing Files and Directories104

I don’t know about you, but personally, I think the file looks better now after running that command:

Figure 5.5: The vim text editor, after running a sample command

Technically, Linux is a kernel and not an operating system. Ubuntu, a distribution of Linux, is the
closest equivalent of an operating system for us. But I’m willing to let that slide, for now. Other than
that, in my opinion, this version of the file is more accurate!

This was a more advanced example of vim usage that would normally be outside the scope of this book.
I wanted to show you an example of the power of this amazing editor, and finding and replacing text
is just one of the many things we can do with it. Some people (including myself) even go as far as
to install plugins to essentially turn vim into an Integrated Development Environment (IDE). In the
example we’ve just used, we were able to find and replace all occurrences of a string with another
string. This was also an example of the types of tasks we carry out in command mode, which allows
us to manipulate text and enter more advanced commands. With this admittedly contrived example,
you can immediately see the value of having multiple modes in vim.

I’ve been using vim for about a decade or so because I can never seem to figure out how to exit it. Okay,
to be fair, that joke is getting to be a bit old now. If you’ve already been using Ubuntu or any other Linux
distribution for a while, that joke probably made you cringe a little. If that was the first time you’ve
seen it, then I’m glad I was the one that introduced you to it—for some reason, vim has a reputation
for being difficult to exit. But that’s not really true at all, it’s actually quite easy. In command mode,
you simply enter :q to exit the editor:

:q

Chapter 5 105

If you’ve made changes, the :q command won’t let you exit, but you can force exit if you add an
exclamation mark, so the command becomes :q!. If you’d also like to save changes while exiting, add
w, so the command inside vim would become:

:wq

Essentially, we’re exiting the editor (q) and writing the file at the same time (w). In command mode,
commands start with a colon (:) and then the actual command. There are so many commands available
that it’s impossible to talk about them all in one chapter. What I’ll do, then, is mention some that I
consider to be the most important.

First, it’s actually possible to run a shell command without leaving vim by using the following command:

:! <shell command>

The exclamation mark allows you to run a command, and then you type the actual command. For
example:

:! ls -l /var/log

The previous example will show you the contents of the /var/log directory, and then you can press
Enter to return back to vim. The :sp command is short for split:

:sp /path/to/file

In this case, vim is able to show you more than one file at a time in the same window, effectively
splitting the window to show you both files. With :split, or :sp for short (both do the same thing), it
will either split the file into two views (the same file open in each) or it will show a separate file in the
other split if you give it a filename. This command will split the file horizontally:

Figure 5.6: The vim text editor, with two files open in the same window

Managing Files and Directories106

The previous screenshot shows two files open, /var/log/apt/history.log and /var/log/syslog. You
may also notice that the status bar for each file, at the bottom, shows RO. As you can probably guess,
this stands for read only and displays on the screen because I’m viewing files that only root has access
to change, and I didn’t use sudo.

To switch between the two files, we can press the w key twice while holding Ctrl. When we do that, our
insertion point moves from one split to the other. To exit each individual buffer (or the editor itself, if
we only have one file open), we can press Esc to return to command mode, and then enter the :q or
:q! command to exit without saving changes, or :wq to exit while also saving changes, just like before.

An alternative to :split is :vsplit, or :vs for short. It does the same thing as :split, but it splits the
window vertically. Considering most computer displays nowadays are widescreen (and even ultra-
widescreen), a vertical split often works out better in a practical sense:

Figure 5.7: The vim text editor, with two files open in a vertical split

To be honest, the effect doesn’t look all that great in the previous screenshot, the reason being the
width of a page in a book isn’t enough to really show the benefit. Go ahead and give it a shot and see
for yourself.

So far, we’ve gone over two modes of vim—command and insert mode. But there’s also another
commonly used mode we haven’t discussed yet—visual mode. Visual mode allows you to select text,
which then allows you to perform tasks such as copy and paste.

To do so, make sure you’re in command mode, and then start by moving the cursor to the first character
in a series of text you want to copy. Then, press the v letter key on your keyboard, and move the
selection with your arrow keys.

Chapter 5 107

You’ll notice that you’ll highlight more text as you move the cursor. Once you’ve selected all the text
that you’d like to copy, press the y key and the highlight will go away. At this point, you’ve essentially
copied the text you had highlighted into the vim equivalent of the clipboard, similar to desktop operating
systems. You can then (while also in command mode) press the p key to paste the text wherever the
cursor is. It may take a few tries to get a hang of the workflow, but go ahead and give it a shot. If you make
a mistake, you can press u while in command mode to undo, so you can revert any changes you make.

Again, vim is a somewhat advanced editor. Learning the basic functions is fairly easy, so knowing
how to open, edit, close, and save files is something you can learn fairly quickly. The feature set of
vim is so vast that I’m still learning new tricks many years after I started using it. To make sure you
understand the basics though, let’s summarize the basic workflow of vim to help you memorize it. It
looks something like this:

1.	 Open Vim by either typing vim by itself, or with a filename: vim <filename>.
2.	 You start in command mode. This mode is great for running vim commands. Press the Insert or

the i key to switch to insert mode.
3.	 While in insert mode, you can edit the text by typing with your keyboard and moving the cursor

around with the arrow keys.
4.	 When you’re done editing the file, press Esc to return to command mode.
5.	 To exit without saving changes, enter the :q or :q! command. If you do want to save changes,

enter :w by itself to save and remain in the editor, or :wq to save and quit vim at the same time.

Entire books could be written about vim (and there have been), so it would be outside the scope of
this book to go into exhaustive detail. In fact, I even have a dedicated video tutorial series about it at
www.learnlinux.tv if you’re interested in learning more. But for now, I’ll leave you with a few more
useful tips that I think you should know.

While in command mode, you can press the x key to delete a single character, wherever the cursor is.
You can press the d letter key twice in succession to delete an entire line. When you do this, that line
is also copied into the paste buffer; you can paste that line by pressing p.

In addition, I mentioned several times that you can switch to insert mode by pressing i or Insert. You can
also do so by pressing the a letter key with or without holding Shift. If you don’t hold Shift, you’ll enter
insert mode one character to the right. This isn’t very useful to me, but typing a capital A is something
I find myself doing a lot, which enters you into insert mode while also taking you to the very end of
the current line. Since I often want to start typing after the end of a sentence, this works well for me.

Also, while in command mode, you can type Shift + g to immediately go to the very end of the file.
Alternatively, you can press the g key twice in succession to move to the very top of the file.

Another trick I like is to turn on line numbers. This is useful, especially if an error message in a log file
is complaining about a file regarding a specific line. The following command turns on line numbers:

:set number

The following command disables line numbers:

:set nonumber

http://www.learnlinux.tv

Managing Files and Directories108

If you’d always like to see line numbers by default, you can edit the .vimrc file inside your home
directory. This file is read by vim each time you start it.

Note that the .vimrc file begins with a period, which means that the file is hidden. Hidden files aren’t
normally shown to you when you use ls to list the contents of a directory. Using the -a option with
the ls command will show all files, including the ones that are normally hidden.

Go ahead and open the .vimrc file in your editor:

vim ~/.vimrc

Most likely, this will be a blank file for you as a .vimrc file doesn’t exist by default. There are many
commands we can add to tweak the behavior of the vim editor, too many to mention in a single chapter.
The following line is very useful though, as it ensures that line numbers are enabled by default:

set number

Leaving out the colon at the beginning of the line is intentional; it’s not required inside the .vimrc
file. From this point forward, each new vim session you open will start off with line numbers enabled.
You can still disable line numbers as needed with the :set nonumber command within vim as we did
earlier. In addition, you can add many more customizations to vim with the .vimrc file, but there
are simply too many possibilities to mention here. For now, just know that customizing vim with the
config file is something that you can do.

Now that we know how to edit files, we should also take a closer look at streams, which allow us to
manipulate both input and output in various ways.

Input and output streams
During our journey into Ubuntu Server so far, we’ve worked quite a bit within the terminal. We’ve
been able to inspect the contents of files, insert text into files, and more. We’ve actually been working
with streams the entire time without knowing it. In this section, we’re going to talk about this subject
in more detail.

If you’ve studied computer science at all, then you probably already know that output refers to things
that are printed out of the computer (for example, text being printed to the screen, or onto paper
from a printer) and input refers to data that is being entered into a computer, whether that be on the
command line, into a file, or similar.

Linux takes this concept a bit further. Streams in Linux refer to a special way to handle what’s going
in or out, and beyond the input and output streams, we also have a third that refers to errors.

Output streams in Linux are referred to as Standard Output, and input streams are referred to as
Standard Input. These are abbreviated as stdout and stdin, respectively. The reason for the expansion
of the simple concept of input/output into a concept of its own is because, on the Linux shell, we can
handle these streams differently and perform different tasks with them.

Chapter 5 109

We’ve been working with standard output throughout the entire book so far. Everything that is printed
to the terminal is standard output. For example, when you ran the sudo apt install vim-nox
command earlier, the results of that command (the flood of text showing the status of the package
installation as it occurred) was standard output. When you use the cat /var/log/syslog command
to have the contents of /var/log/syslog dumped onto the screen, the contents being displayed are
standard output. By far, standard output is something you’ll work with the most.

To understand the concept of standard output better, let’s take a look at redirection. The following
command is an example:

cat /var/log/syslog > ~/logfile.txt

With that command, we’re using cat to display the contents of /var/log/syslog. But instead of simply
showing the contents onscreen we use the > character to redirect standard output into a file, ~/logfile.
txt. This means that standard output (showing the contents of the file) will not be shown at all, since
we redirected that into a file. Similarly, we could have also run:

cat /var/log/syslog 1> ~/logfile.txt

Notice that I added a 1 right before the greater-than symbol. Standard output is designated by a file
descriptor of 1. So, with that command, I’m specifically saying that I want to redirect standard output,
and only standard output, into the file. Standard output is implied, so I didn’t need to include the 1.
That’s why simply using the greater-than symbol works for redirecting standard output to a file.

If you want to append a file rather than completely overwrite it, you can use two greater-than symbols
(>>) to append, rather than overwrite. For example, the following command will add the contents of
the syslog file to the end of the logfile.txt file, rather than overwrite the entire file:

cat /var/log/syslog >> ~/logfile.txt

Standard input also has a file descriptor, which is 0. Standard input is how commands receive data.
Essentially, commands that accept input from the user do so by accepting stdin. Standard input is a
bit more challenging to show in an example, but the following works:

cat /var/log/syslog | grep -i <keyword>

With that command, I’m grabbing the contents of the /var/log/syslog file and piping that into
the grep command, which allows me to display only the lines that include a specific term. No two
syslog files will be the same, since every server can be configured uniquely. But if you’re attempting
to investigate a specific application or service, you can grep the log for keywords you think might be
appropriate. If you include the -i option, then grep will perform a search that’s case-insensitive. In
this example, the output of the cat command becomes standard input to the grep command. This
command can be executed with any search term of your choice.

I could have also run:

cat < /var/log/syslog | grep Network

Managing Files and Directories110

In that example, I’m using the less-than symbol to redirect the contents of /var/log/syslog to be
standard input to the cat command. The cat command normally prints whatever text is fed to it to
the screen as standard output, but instead, I’m using the pipe symbol, |, to grab that output and use
it as standard input to the grep command.

This concept can be a bit confusing at first, but if you keep practicing it, it will definitely make sense.
Let’s look at another example, so we can understand standard error (stderr) as well:

find / -name "syslog"

The find command allows you to find files that match particular criteria, such as looking for files that
are named syslog in this example. Here, we’re searching the entire filesystem, because we used / to
start the search from. The problem is I don’t have permission to read all the files on the filesystem,
and I didn’t use sudo. This is going to result in quite a few errors being printed to the screen, errors
such as these:

find: '/var/lib/netdata/health': Permission denied
find: '/var/lib/netdata/registry': Permission denied
find: '/var/lib/netdata/cloud.d': Permission denied
find: '/var/lib/udisks2': Permission denied

Since the find command was used to search the entire filesystem, including places I don’t have
permission to look, our terminal will be flooded with errors. These errors are displayed using standard
error, which has a file descriptor of 2. If we want to hide these errors, we can do this:

find / -name "syslog" 2> /dev/null

With that command, no errors will show up when we run it. That’s because we instructed the interpreter
to capture standard error and redirect it to /dev/null. /dev/null is a special device where things
disappear forever. If you move or redirect something there, it’s effectively deleted. Since a standard error
has a file descriptor of 2, we combined that with the greater-than symbol to form 2>, which basically
instructs the shell to do a redirect, but to only redirect standard error and leave standard output alone.
We can also choose to redirect more than one stream to different places within a single command:

find / -name "syslog" 1> stdout.txt 2> stderr.txt

With that variation, I’m redirecting successful output to stdout.txt, and the errors to stderr.txt.
This allows us full control over where successful and unsuccessful messages are printed. This also
helps us quite a bit when it comes to troubleshooting, because we may want to focus on only the
errors, and getting rid of the success output may trim the number of lines we’ll have to look through.

I recommend that you go ahead and practice this concept as much as you can; it’s definitely something
you’ll want to commit to memory. You don’t have to master this concept right now, but knowing the
basics will provide a great foundation.

Chapter 5 111

Next, let’s discuss another aspect of file management—links. Sometimes, you’ll need to link one thing
to another, and there are a few ways to go about that along with some best-practice advice.

Using symbolic and hard links
If you’ve used a graphical operating system for more than a week, you’re probably more than familiar
with the concept of shortcuts. Either on the desktop or within a menu, you will have shortcuts to files
and applications. This could be a shortcut to your home or profile directory, a shortcut to an application,
an individual file, and so on. We have the same concept in Linux.

With Linux, we can link files to other files, which gives us the ability to create our own shortcuts, which
are effectively similar to shortcuts in graphical operating systems, but without the requirement of a
GUI. This comes in the form of symbolic and hard links, which are two different methods by which
we can link things. Symbolic and hard links are very similar, but to explain them, you’ll first need to
understand the concept of inodes.

An inode is a data object that contains metadata regarding files within your filesystem. Although a full
walkthrough of the concept of inodes would be quite long, think of an inode as a type of database object,
containing metadata for the actual items you’re storing on your disk. Information stored in inodes
includes details such as the owner of the file, permissions, last modified date, and type (whether it is
a directory or a file). Inodes are represented by an integer number, which you can view with the -i
option of the ls command. On my system, I created two files: file1 and file2. These files are inodes
265416 and 266112, respectively. You can see this output in the following screenshot where I run the
ls -i command. This information will come in handy shortly:

Figure 5.8: Output of ls -i

As I mentioned earlier, there are two types of links in Linux: the symbolic link and hard link. While
the two types of links approach the concept differently, they pretty much serve the same purpose.
Basically, a link allows us to reference a file somewhere else on our filesystem.

For a practical example, let’s create a hard link. In my case, I have a couple of files in a test directory,
so I can create a link to either of them. To create a link, we’ll use the ln command:

ln file1 file3

Managing Files and Directories112

Here, I’m creating a hard link (file3) that is linked to file1. To play around with this, go ahead
and create a link to a file on your system. If we use ls again with the -i option, we’ll see something
interesting:

Figure 5.9: Output of second ls -I command

If you look closely at the output, both file1 and file3 have the same inode number. Essentially, a hard
link is a duplicate directory entry, where both entries point to the same data. In this case, we created
a hard link that points to another file. With this hard link created, we can move file3 into another
location on the filesystem and it will still be a link to file1. Hard links have a couple of limitations,
however. First, you cannot create a hard link to a directory, only a file. Second, this link cannot be
moved to a different filesystem. That makes sense, considering each filesystem has its own inodes.
Inode 265416 on my system would, of course, not point to the same file on another system, if this
inode number even exists at all.

To overcome these limitations, we can consider using a soft link instead. A soft link (also known as
a symbolic link or symlink) is an entry that points to another directory or file. This is different from
a hard link because a hard link is a duplicate entry that references an inode, while a symbolic link
references a specific path. Symbolic links can not only be moved around between filesystems; we can
also create a symbolic link to a directory as well. To illustrate how a symbolic link works, let’s create
one. In my case, I’ll delete file3 and recreate it as a symbolic link. We’ll again use the ln command:

rm file3
ln -s file1 file3

With the -s option of ln, I’m creating a symbolic link. First, I deleted the original hard link with the rm
command (which doesn’t disturb the original file, file1) and then created a symbolic link, also named
file3. If we use ls -i again, we’ll see that file3 does not have the same inode number as file1:

Figure 5.10: Output of ls -i after creating a symbolic link

Chapter 5 113

Notice that the inode numbers of each file are all different. At this point, the main difference compared
with a hard link should become apparent. A symbolic link is not a clone of the original file; it’s simply
a pointer to the original file’s path. Any commands you execute against file3 are actually being run
against the target that the link is pointing to. Hard links, on the other hand, point directly to the file.

In practice, symbolic links are incredibly useful when it comes to server administration. However,
it’s important not to go crazy and create a great number of symbolic links all over the filesystem. This
certainly won’t be a problem for you if you are the only administrator on the server, but if you resign
and someone takes your place, it will be a headache for them to figure out all of your symbolic links
and map where they lead to. You can certainly create documentation for your symbolic links, but then
you’d have to keep track of them and constantly update documentation. My recommendation is to
only create symbolic links when there are no other options, or if doing so benefits your organization
and streamlines your file layout.

Getting back to the subject of symbolic links versus hard links, you’re probably wondering which you
should use and when to use them. The main benefit of a hard link is that you can move either file (the
link or the original) to anywhere on the same filesystem and the link will not break. This is not true of
symbolic links; however, if you move the original file, the symbolic link will be pointing to a file that
no longer exists at that location. Hard links are basically duplicate entries pointing to the same object,
and thus have the same inode number, so both will have the same file size and content. A symbolic
link is a pointer to the file’s path—nothing more, nothing less.

However, even though I just spoke about the several benefits of hard links, I actually recommend
symbolic links for most use cases. They can cross filesystems, can be linked to directories, and it’s
easier to determine from the output where they lead. If you move hard links around, you may forget
where they were originally located or which file actually points to which. Sure, with a few commands
you can find them and map them easily. But overall, symbolic links are more convenient in the long
run. As long as you’re mindful of recreating your symbolic link whenever you move the original file
(and you use them only when you need to), you shouldn’t have an issue.

Summary
In this chapter, we elevated our terminal kung-fu to another level and looked at concepts such as
moving and copying files. We continued into a discussion of two popular text editors, Nano and Vim.
Then, we took a dive into the subject of streams, and finished off the chapter with an understanding
of the differences between symbolic and hard links, as well as how to create them.

In Chapter 6, Boosting Your Command-line Efficiency, we’ll dive a bit deeper into command-line tips and
tricks, which will include a discussion on Bash history, writing basic scripts, and more.

Relevant videos
•	 Linux Crash Course – Data Streams (LearnLinuxTV): https://linux.video/se-data-streams
•	 Linux Crash Course – nano (LearnLinuxTV): https://linux.video/le-nano
•	 Linux Crash Course – Symbolic Links (LearnLinuxTV): https://linux.video/se-symlinks
•	 Vim Text Editor Tutorial Series: https://learnlinux.link/vim

https://linux.video/se-data-streams
https://linux.video/le-nano
https://linux.video/se-symlinks
https://learnlinux.link/vim

Managing Files and Directories114

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

6
Boosting Your Command-line
Efficiency

Throughout this book, we’ve been using the command line quite heavily. Using the shell, we’ve in-
stalled packages, created users, edited configuration files, and more. In the last chapter, we took a
look at file management to enhance our terminal skills further. This time around, we’ll dedicate an
entire chapter to the shell, with the goal of becoming more efficient with it. Here, we’ll take what we
already know and add some useful time-saving tips, some information on looping, variables, and
we’ll even look into writing scripts.

In this chapter, we will cover the following topics:

•	 Understanding the Linux shell
•	 Understanding Bash history
•	 Learning some useful command-line tricks
•	 Understanding variables
•	 Writing simple scripts
•	 Putting it all together: Writing an rsync backup script

Let’s begin this chapter with further discussion regarding the Linux shell, which will help us better
understand how we’re interacting with the server while we enter commands.

Understanding the Linux shell
When it comes to the Linux shell, it’s important to understand what exactly the term pertains to. We’ve
been using the command line repeatedly throughout the book, but we haven’t yet had any formal
discussion about the actual interface through which our commands are entered.

Essentially, we’ve been entering our commands into a command interpreter known as the Bourne Again
Shell, or simply Bash. Bash is just one of many different shells that you can use to enter commands.

Boosting Your Command-line Efficiency116

There are other options, including Zsh, Fish, and ksh, but Bash is the default command shell for the
majority of Linux distributions. It’s even available on macOS (although the default on that platform
is Zsh nowadays), as well as on Windows by installing the Windows Subsystem for Linux. Therefore,
by understanding the basics of Bash, your knowledge will be compatible with other distributions and
platforms. While it’s fun to learn other shells such as Zsh, Bash is definitely the one to focus the most
attention on if you’re just starting.

You may wonder, then, where you configure the shell that your user account will use. If you recall
from Chapter 2, Managing Users and Permissions, we looked at the /etc/passwd file. As I’m sure you
remember, this file keeps a list of user accounts available on the system. Go ahead and take a look at
this file to refresh yourself by entering the following command:

cat /etc/passwd

This will produce an output like the one shown in Figure 6.1:

Figure 6.1: The last several lines of a sample /etc/passwd file

See the last field in every entry? That’s where we configure which shell is launched when a user logs
in or starts a new terminal session. Unless you’ve already changed it, the entry for your user account
should read /bin/bash.

You’ll see other variations in this file, such as /bin/false or /usr/sbin/nologin. These are actually
invalid shells that will prevent a user from logging in to the system if one of these is set as the default
for that user. While it may seem strange to set a user’s shell to one that prevents them from logging
in, this practice is fairly common – not all user accounts need to log in to a server.

System accounts also exist alongside normal user accounts, which are created for background jobs.
These system users won’t need to actually log in to the system in order to do their work, so it’s com-
mon to take that a step further and set the shell of a system user to an invalid shell, so that way, the
account cannot be used to log in to the server if it’s taken over by an outside threat actor (the less an
account can do, the safer it is).

The shell program itself is responsible for reading the commands you type and having the Linux
kernel execute them. Some shells, Bash notably, have additional features, such as history, that are
very useful to administrators.

Chapter 6 117

Understanding Bash history
Speaking of history, let’s dive right into that concept. By default, Bash keeps track of all the commands
you enter during your sessions, so that if you need to recall a previously entered command, you can
definitely do so. History also serves another purpose, and that is seeing what other users have been
up to. However, since users can edit their own history to cover their tracks, it’s not always useful for
that purpose.

You may have already seen Bash’s history feature in some form, if you’ve ever pressed the up and
down arrows on the shell to recall a previously used command. If you didn’t already know you could
do that, go ahead and give it a try. You should see that by pressing the up and down arrows, you can
cycle through commands that you’ve used previously.

Another trick is that you can also simply type history in the shell and see a list of previously entered
commands, as shown in Figure 6.2:

Figure 6.2: Output from the history command

At this point, you can copy and paste a command you’ve used previously from this list to run it again.
In fact, there’s an even easier way. Do you notice the number on the left of each command? We can
utilize that number to quickly recall a previously used command. In my screenshot, item 566 is
where I ran sudo apt update. If I wanted to run that same command again, I could simply enter the
following command:

!566

In this case, I typed just four characters, and I was able to recall the previously used command, which
performs the same action as typing this:

sudo apt update

That saves a lot of typing, which is great because we administrators want to type as little as possible
(unless we’re writing a book).

Let’s look at a few additional history commands we can use. First, if we want to delete something from
the history, we can simply do this:

history -d 566

Boosting Your Command-line Efficiency118

In this example, we deleted item 563 from Bash’s history. To delete a different history entry, simply
replace 563 with whatever the number is for the item we would want to remove. You may be wondering
why deleting something from the history would be necessary. The answer to that is simple: sometimes
we make mistakes. Perhaps we mistyped something, and we don’t want a junior administrator to look
at the history and rerun an invalid command. Worse, if we accidentally saved a password to the history,
it would be there for all to see. We would definitely want to remove that item so that the password isn’t
saved in plain text in the history file. One very common example of this is with MySQL or MariaDB.
When you enter the MySQL or MariaDB shell, you can use the -p option and type the password in one
line. It would look something like this:

mariadb -u root -pSuperSecretPassword

That command may appear useful, because in one command you’d be logged in to your database
server as its own version of the root user. However, this is one of my pet peeves—I really don’t like it
when people run commands that include a password in the clear. Having the root password in your
shell’s history is a HUGE security risk. This is just one example of something you won’t want in our
Bash history, though. My main goal here is to demonstrate that you should think about security when
entering commands. If you have a potentially sensitive item in your command history, you should
remove it. In fact, you can actually enter a command and not have it saved in the history at all. Simply
prefix the command with a space. If you do, it will not be recorded in the history file. Go ahead, give
it a try and see for yourself.

Having commands prefixed with a space ignored in Bash is actually a custom option enabled by de-
fault in Ubuntu Server. Not all distributions include this feature enabled by default. If you’re using a
distribution that doesn’t have this enabled already, add the following to your .bashrc file (we will talk
about this file in greater detail later).

HISTCONTROL=ignoreboth

This configuration line also causes duplicate commands to not be entered into the history file as well,
which can condense the history file.

So, you might be wondering, where is this history information actually stored? Check out the .bash_
history file, which is found in your home directory (or /root for the root user). When you exit your
shell, your history is copied to that file. If you remove that file, you’re effectively clearing your history.
I don’t recommend you make a habit of that, though. Having a history of commands is very useful,
especially when you may not remember how you solved a problem last time. History in Bash can save
you from looking up a command again. To find out more about what the history command can do,
check out the relevant man page with man history.

Chapter 6 119

Learning new tricks with the command line that allow me to work more efficiently is a great feeling,
at least for me. In the next section, we’ll explore some useful tricks we can utilize while working with
the shell.

Learning some useful command-line tricks
Productivity hacks utilizing the shell are some of my favorite things in this world, right up there with
music, video games, and Diet Pepsi. There’s nothing like the feeling you get when you discover a useful
feature that saves you time or increases your efficiency. There are many things I’ve discovered along
the way that I wish I had known earlier on. One of my goals while writing this book is to teach you as
many things as I can that took me longer to learn than I’m comfortable admitting to. In this section,
in no particular order, I’ll go over a few tricks that increased my workflow.

First, entering !! (two exclamation marks) in your terminal will repeat the command you last used. By
itself, this may not seem like much. After all, you can press the up arrow key once and press Enter to
recall the previous command and execute it. But, when paired with sudo, !! becomes more interest-
ing. Imagine for a moment that you entered a command that needs root privileges, but you forgot to
use sudo. We’ve all made this mistake. In fact, as of the time I’m writing this chapter, I’ve been using
Linux for 20 years and I still forget to use sudo from time to time. When we forget sudo, we have to
type the command all over again. Or, we can just do this:

sudo !!

And just like that, you prefixed the previously used command with sudo without having to completely
retype it.

Speaking of avoiding unnecessary typing, a very easy (yet incredibly useful) feature is Tab Completion.
Often, the Bash shell will be able to automatically complete part of your commands. If you start typing
a few characters of a command or path, press Tab on your keyboard, and if the characters you’ve typed
are enough to narrow down the result, the shell will complete the path for you. You can also press
Tab twice in succession to see a list of possibilities that match the characters you’ve typed so far. Go
ahead and give it a shot. By way of a quick example, you can type ls along with the path to your home
directory, leaving some characters out on purpose. Then press Tab, and see whether the command
automatically completes. For example, I can type the following into the terminal:

ls /home/j

And after I press Tab, it completes the command for me:

ls /home/jay

Boosting Your Command-line Efficiency120

In addition, there are other special keyboard keys that will help you to navigate the command line
quicker. Here’s a table containing some of the most useful keyboard shortcuts:

Keyboard shortcut Result

Ctrl + a Moves the cursor to the beginning of the line

Ctrl + e Moves the cursor to the end of the line

Ctrl + l Clears the screen

Ctrl + k Deletes characters from the cursor to the end of the line

Ctrl + u Deletes everything you’ve typed on that line (also works to clear text while
entering a password)

Ctrl + w Deletes the word to the left of the cursor

Going a bit further into the command history, we can also press Ctrl + r on the shell to initiate a search.
After pressing these keys, we can start typing a command, and we’ll get a preview of a command that
matches what we’re typing, which will be narrowed down further as we type more characters of it.
This is one of those things that is hard for me to describe, and screenshots certainly don’t help here,
so go ahead and just give it a shot. For example, press Ctrl + r and then start typing sudo apt. The last
time you used that command should appear, and you can press Ctrl + r again, and again, and again
to see additional examples of commands that you’ve typed in the past that contain those characters.
When you get efficient with this, it’s actually faster than the history command, but it takes a bit to
get used to this.

Another fun trick is editing a command you’ve previously typed in a text editor. I know this sounds
strange, but hear me out. Assume you pressed the up arrow, you have a very long command, and you
just want to edit part of it without having to execute the entire thing, perhaps a command like this:

sudo apt update && sudo apt install apache2

Let’s assume you want to install nginx instead of apache2, but the rest of the command is right. If you
hold Ctrl and then press x followed by e, the command will open in a text editor. There, you can change
the command. Once you’re done making your changes, the command will execute once you save the
file. Admittedly, this is usually only useful when you have a very long command and you need to just
change part of it. It’s also a little weird, but so are computers.

Did you notice the two & symbols in the previous command? This is another useful trick; you can
actually chain commands together. In the previous example command, we’re telling the shell to exe-
cute sudo apt update. Next, we’re telling the shell to then execute sudo apt install apache2. The
double ampersand is known as the logical AND operator, so the second command is run if the first was
successful. If the first command was successful, the second command will execute right after. Another
method to chain commands is this:

sudo apt update; sudo apt install apache2

Chapter 6 121

The difference with the semicolon is that we’re telling the shell to execute the second command re-
gardless of whether the first command was successful. You may then be wondering, what constitutes
success on the shell? An obvious answer to this question might be “it’s successful if there are no error
messages.” While that’s often true, the shell utilizes exit codes to programmatically attribute success
or failure. You can see the exit code of a command by typing this immediately after the previous
command finishes:

echo $?

An exit code of 0 means success; anything else is some sort of error. Different programs will attribute
different codes to different types of failures, but 0 is always a success. With this command, what
we’re actually doing is printing the content of a variable. $? is actually a variable, which in this case
only exists to hold an exit code. The echo command itself can be used to print text to the shell, but
it’s often used to print the contents of a variable (we’ll get into this in more detail in the Understanding
variables section).

Now, it’s time for my favorite time-saving trick of them all—command aliases. The concept of an alias
is simple: it allows you to create a command that is just another name for another command. This
allows you to simplify commands down to just one word or a few letters. Consider this command, for
example:

alias install="sudo apt install"

When you enter the previous command, you will receive no actual output. But what happens is now
you have a new command available—install. This command isn’t normally available; you just created
it with this command.

You can verify that the alias was created successfully by simply running the alias command, which
will show you a list of aliases present in the shell. If you create a new alias, you should see it in the
output. You’ll also see additional aliases in the output that you did not create. This is because Ubuntu
sets up some by default. In fact, even the ls command is an alias!

With this new alias created, any time you execute install on the command line, you’re instead exe-
cuting sudo apt install. Now, installing packages becomes simpler:

install tmux

Just like that, you installed tmux. You didn’t have to type sudo apt install tmux; you just simplified
the first three words in the command into install. In fact, you can simplify it even further:

alias i='sudo apt install'

Now, you can install a package with this:

i tmux

With aliases, you can get very creative. Here are some of my personal favorites.

Boosting Your Command-line Efficiency122

View the top 10 most-CPU-consuming processes:

alias cpu10='ps -L aux | sort -nr -k 3 | head -10'

View the top 10 most-RAM-consuming processes:

alias mem10='ps -L aux | sort -nr -k 4 | head -10'

View all mounted filesystems, and present the information in a clean tabbed layout:

alias lsmount='mount | column -t'

Clear the screen by simply typing c:

alias c=clear

What other aliases can you come up with? Think of a command you may use on a regular basis and
simplify it.

There’s one issue though, and that is the fact that when you exit your terminal window, your aliases are
wiped out. How do you retain them? That leads me to my next productivity trick, editing your .bashrc
file. This file is present in your home directory and is read every time you start a new terminal session.
You can add all of your alias commands there; just add them somewhere in the file (for example, at
the end). You will need to include the entire command, beginning with alias and ending with the
commands in quotes. If you wanted to steal my example aliases, you would enter the following lines
somewhere in your .bashrc file:

alias i='sudo apt install'
alias cpu10='ps -L aux | sort -nr -k 3 | head -10'
alias mem10='ps -L aux | sort -nr -k 4 | head -10'
alias lsmount='mount |column -t'

There are, of course, additional time-saving tricks that we could talk about here, but then again, Bash
is so complex that we can write an entire book about it (and many people have). As we go along in
this chapter, I’ll give you even more tips. For now, here’s a final trick, which changes your working
directory back to the previous directory you were in:

cd -

That simple command was mentioned in Chapter 4, Navigating and Essential Commands, but it’s worth
a second mention—you’re welcome! Next, let’s take a look at shell variables, which allow us to store
information for easy access in other commands.

Understanding variables
Bash is more than just a shell. You could argue that it is very similar to a complete programming
language, and you wouldn’t be wrong. Bash has a built-in scripting engine (we will get into scripting
later) and there are many debates as to what distinguishes a scripting language from a programming
language, and that line becomes more and more blurred as new languages come out.

Chapter 6 123

As with any scripting language, Bash supports variables. The concept of variables is very simple in
Bash, but I figured I’d give it its own (relatively short) section to make sure you understand the basics.
You can set a variable with a command such as the following:

myvar='Hello world!'

When Bash encounters an equal sign after a string, it assumes you’re creating a variable. Here, we’re
creating a variable named myvar and setting it equal to Hello world! Whenever we refer to a vari-
able, though, we need to specifically clarify to Bash that we’re requesting a variable, and we do that
by prefixing it with a dollar symbol ($). Consider this command:

echo $myvar

If you’ve set the variable as I have, executing that command will print Hello world! to stdout. The
echo command is very useful for printing the contents of variables. The key thing to remember here
is that when you set a variable, you don’t include the $ symbol, but you do when you retrieve it. Also,
keep in mind that there’s no space on either side of the equals sign.

You will see variations of variable name formats as you work with various Linux servers. For example,
you may see variable names in all caps, camel case (MyVar), as well as other variations. These variations
are all valid, and depending on the background of the individual creating them (developers, adminis-
trators, and so on), you may see different forms of variable naming. It’s also extremely common that
built-in variables created as part of the distribution will be named in all upper case.

Variables work in other aspects of the shell as well, not just with echo. Consider this:

mydir="/etc"
ls $mydir

Here, we’re storing a directory name in a variable and using the ls command against it to list its con-
tents. This may seem relatively useless, but when you’re scripting, this will save you time. Anytime
you need to refer to something more than once, it should be in a variable. That way, in a script, you
can change the contents of that variable just one time and everywhere in the script will reference it.

There are also variables that are automatically present in your shell that you did not explicitly set
yourself. Enter this command for fun:

env

Wow! You should see a lot of variables, especially if you enter it in a desktop version of Ubuntu.

These variables are set by the system, but can still be accessed via echo as you would any other. Some
notable ones include $SHELL (stores the name of the binary that currently handles your shell), $USER
(stores your current username), and $HOST (stores the hostname for your device). Any of these variables
can be accessed at any time, and may even prove beneficial in scripts.

Boosting Your Command-line Efficiency124

We’ve already gone over standard output (stdout), standard error (stderr), and standard input (stdin)
in the previous chapter. We’ll use standard input again here, when we capture input to store it as a
variable. Try this command for example:

read age

When you run this command, you’ll just be brought to a blank line, with no indication as to what you
should be doing. Go ahead and enter your age, and then press Enter. Next, run this:

echo $age

In a script, you would want to inform the user what they should be entering, so you would probably
use something similar to these commands:

echo "Please enter your age"
read age
echo "Your age is $age"

We’ve discussed standard input in the previous chapter, and we can see it in action again here as we
capture input from the user and store it in a variable.

Automation is a subject we’ll explore multiple times throughout the remainder of the book, which will
include more advanced subjects such as configuration management. Writing scripts is the simplest
form of automation, which gives you the ability to type commands in a text file and have them all
execute. That’s what we’ll explore next.

Writing simple scripts
This is the section where everything we’ve talked about so far starts to come together. Writing scripts
can be very fun and rewarding, as they allow you to automate large jobs or just simplify something
that you find yourself doing over and over. The most important point about scripting is this: if it’s
something you’ll be doing more than once, you really should be making it into a script. This is a great
habit to get into.

A script is a very simple concept; it’s just a text file that contains commands for your shell to execute
one by one. A script written to be executed by Bash is known as a Bash script, and that’s what we’ll
work on creating in this section.

At this point, I’m assuming that you’ve practiced a bit with a text editor in Linux. It doesn’t matter if
you use Vim or Nano. Since we’ve edited text files before (we went over that in Chapter 5, Managing
Files and Directories), I’m under the assumption that you already know how to create and edit files.
We’ll be using a text editor to create a simple script as an example, using the following command:

nano ~/myscript.sh

If you weren’t already aware, a tilde (~) is just a shortcut for a user’s home directory. Therefore, on my
system, the previous command would be the same as if I had typed:

nano /home/jay/myscript.sh

Chapter 6 125

Inside the file, type the following:

#!/bin/bash
echo "My name is $USER"
echo "My home directory is $HOME"

Save the file and exit the editor. In order to run this file as a script, we need to mark it as executable:

chmod +x ~/myscript.sh

To execute it, we simply call the path to the file and the filename:

~/myscript.sh

The output should look similar to the following:

My name is jay
My home directory is /home/jay

The first line, #!/bin/bash, might seem strange if you haven’t seen it before. Normally, lines starting
with a hash symbol (#) are ignored by the interpreter. The one on the first line is an exception to this.
The #!/bin/bash entry we see on the first line is known as a hash bang, or shebang. Basically, it just
tells the kernel which interpreter to use in order to run the commands inside the script. There are
other interpreters we could be using, such as #!/usr/bin/python if we were writing a script in the
Python language. Since we’re writing a Bash script, we used #!/bin/bash.

The lines that followed were simple print statements. Each one used a system variable, so you didn’t
have to declare any of those variables as they already existed. Here, we printed the current user’s
username and home directory.

The concept of scripting becomes more valuable when you start to think of things you do on a regular
basis that you can instead automate. To be an effective Linux administrator, it’s important to adopt
the automation mindset. Again, if you are going to do a job more than once, script it. Here’s another
example script to help drive this concept home. This time, the script will actually be somewhat useful:

#!/bin/bash
sudo apt install -y apache2
sudo apt install -y libapache2-mod-php8.1
sudo a2enmod php8.1
sudo systemctl restart apache2

What we’ve done here is theoretically scripted the setup of a web server. We could extend this script
further by having it copy site content to /var/www/html, enable a configuration file, and so on. But
from the preceding script, you can probably see how scripting can be useful in condensing the amount
of work you do. This script could be an advanced web server install script that you could simply copy
to a new server and then run.

Boosting Your Command-line Efficiency126

Notice that the example uses the -y option with apt. If you weren’t already aware, that automatically
answers yes to prompts that may come up as part of the process. Scripts are typically not interactive,
meaning there may not be an administrator sitting in front of it to answer prompts when they appear.
Also, using the a2enmod command to enable php8.1 was not really necessary, as it would’ve been en-
abled automatically as part of installing the libapache2-mod-php8.1 package. But I think you get the
idea; we want to be explicit in scripts and type instructions for the exact state we want things to be in.

Now, let’s get a bit more advanced with scripting. The previous script only installed some packages,
something we probably could’ve done just as easily by copying and pasting the commands into the
shell. Let’s take this script a bit further. Let’s write a conditional statement. Here’s a modified version
of the previous script:

#!/bin/bash
Install Apache if it's not already present
if [! -f /usr/sbin/apache2]; then
 sudo apt install -y apache2
 sudo apt install -y libapache2-mod-php8.1
 sudo a2enmod php8.1
 sudo systemctl restart apache2
fi

Now it’s getting a bit more interesting. The first line after the hash bang is a comment, letting us know
what the script does:

Install Apache if it's not already present

Comments are ignored by the interpreter, but are useful in letting us know what a block of code is doing.

Next, we start an if statement:

if [! -f /usr/sbin/apache2]; then

Bash, like any scripting language, supports branching and the if statement is one way of doing that.
Here, it’s checking for the existence of the apache2 binary. The -f option here specifies that we’re
looking for a file. We can change this to -d to check for the existence of a directory instead. The
exclamation mark is an inverse. It basically means we’re checking if something is not present. If we
wanted to check if something is present, we would omit the exclamation mark. Basically, we’re setting
up the script to do nothing if Apache is already installed. In this case, inside the brackets we are just
executing a shell command, and then the result is checked. The commands sandwiched inside the if
statement are simply installing packages.

Finally, we close out our if statement with the word if backward (fi). If you forget to do this, the
script will fail.

With regard to the concept of if statements, we can compare values as well. Consider the following
example:

#!/bin/bash

Chapter 6 127

myvar=1
if [$myvar -eq 1]; then
 echo "The variable equals 1"
fi

With this script, we’re merely checking the contents of a variable, and taking action if it equals a
certain number. Notice we didn’t use quotation marks when creating the variable, since we just set a
number (integer) here. We would’ve only used quotation marks if we wanted to set the variable value
to a string. We can also take action if the if statement doesn’t match:

#!/bin/bash
myvar=10
if [$myvar -eq 1]; then
 echo "The variable equals 1"
else
 echo "The variable doesn't equal 1"
fi

This was a silly example, I know, but it works as far as illustrating how to create an if/else logic block
in Bash. The if statement checks to see whether the variable was equal to 1. It isn’t, so the else block
executes instead.

The -eq portion of the command is similar to == in most programming languages. It’s checking to see
whether the value is equal to something. Alternatively, we can use -ne (not equal), -gt (greater than),
-ge (greater than or equal to), -lt (less than), and so on.

At this point, I recommend you take a break from reading to further practice scripting (practice is key
to committing concepts to memory). Try the following challenges:

•	 Ask the user to enter input, such as their age, and save it to a variable. If the user enters a num-
ber less than 30, tell them they’re young. If the number is equal to or greater than 30, echo a
statement telling them that they’re old.

•	 Write a script that copies a file from one place to another. Make the script check to see whether
that file exists first, and have an else statement printing an error if the file doesn’t exist.

•	 Think about any topic we’ve already worked on during this book, and attempt to automate it.

Now, let’s take a look at another concept, which is looping. The basic idea behind looping is simply
doing something repeatedly until a condition has been met. Consider the following example script:

#!/bin/bash
myvar=1
while [$myvar -le 15]
do
 echo $myvar
 ((myvar++))
done

Boosting Your Command-line Efficiency128

Let’s go through the script line by line to understand what it’s doing.

myvar=1

With this new script, we’re creating a control variable, called myvar, and setting it equal to 1.

while [$myvar -le 15]

Next, we set up a while loop. A while loop will continue until a condition is met. Here, we’re telling
it to execute the statements in the block over and over until $myvar becomes equal to 15. In fact, a
while loop can continue forever if you enter something incorrectly, which is known as an infinite
loop. An infinite loop is dangerous, and can cause your server to stop responding. If you used -ge 0
instead, you would’ve created exactly that.

do

With do, we’re telling the for loop to prepare itself to start doing something.

 echo $myvar

Here, we’re printing the current content of the $myvar variable—nothing surprising here.

 ((myvar++))

With this statement, we’re using what’s known as an incrementor to increase the value of our variable
by 1. The double parenthesis tells the shell that we’re doing an arithmetic operation, so the interpreter
doesn’t think that we’re working with strings.

done

When we’re done writing a while loop, we must close the block with done. If you’ve typed the script
properly, it should count from 1 to 15.

Another type of loop is a for loop. A for loop executes a statement for every item in a set. For example,
you can have the for loop execute a command against every file in a directory. Consider this example:

#!/bin/bash
turtles='Donatello Leonardo Michelangelo Raphael'
for t in $turtles
do
 echo $t
done

Let’s take a deeper look into what we’ve done here:

turtles='Donatello Leonardo Michelangelo Raphael'

Here, we’re creating a list and populating it with names. Each name is one item in the list. We’re calling
this list turtles. We can see the contents of this list with echo as we would with any other variable:

echo $turtles

Chapter 6 129

Next, let’s look at how we set up the for loop:

for t in $turtles

Now, we’re telling the interpreter to prepare to do something for every item in the list. The t here is
arbitrary, we could’ve used any letter here or even a longer string. We’re just setting up a temporary
variable we want to use in order to hold the current item the script is working on.

do

With do, we’re telling the for loop to prepare itself to start doing something.

 echo $t

Now, we’re printing the current value of $t to stdout.

done

Just as we did with the while loop, we type done to let the interpreter know this is the end of the for
loop. Effectively, we just created a for loop to print each item in a list independently:

Donatello
Leonardo
Michelangelo
Raphael

We included four turtle names in our list, and we were able to iterate through them and print them
out, one by one.

As much as I love turtles (especially the teenage mutant ninja variety), that script isn’t very practical or
useful to us for server administration. Next, we’re going to write a script that can actually be quite useful.

Putting it all together – Writing an rsync backup script
Let’s close this chapter with a Bash script that will not only prove to be very useful but will also help
you enhance your skills. The rsync utility is one of my favorites; it’s very useful for copying data from
one place to another, as well as being helpful for setting up a backup job. Let’s use the following ex-
ample rsync command to practice automation:

rsync -avb --delete --backup-dir=/backup/incremental/08-17-2022 /src /target

This example rsync command uses the -a (archive) option, which retains the metadata of the file(s)
it copies to the target, such as the timestamp and owner. The -v option gives us verbose output, so
we can see exactly what rsync is doing. The -b option enables backup mode, which means that if a
file on the target will be overwritten by a file from the source, the previous version of that file will be
renamed so it won’t be overwritten. Combining these three options, we simplify it to -avb rather than
typing -a -v -b. The --delete option tells rsync to delete any files in the target that aren’t present
in the source (since we used -b, any file that is deleted will be retained).

Boosting Your Command-line Efficiency130

The --backup-dir option tells rsync that any time a file would have been renamed in this way (or
deleted), to instead just copy it to another directory. In this case, we send any files that would have
been overwritten to the /backup/incremental/08-16-2022 directory.

Let’s script this rsync job. One problem we can fix in our script right away is the date that is present
inside the directory we’re using for the --backup-dir. The date changes every day, so we shouldn’t
be hardcoding this. Therefore, let’s start our script by addressing this:

#/bin/bash
curdate=$(date +%m-%d-%Y)

We’re creating a variable called curdate. We’re setting it equal to the output of the $(date +%m-%d-%Y)
command. You can execute date +%m-%d-%Y in your terminal window to see exactly what that does.
In this case, putting a command (such as date) in parentheses and a dollar symbol means that we’re
executing the command in a sub-shell. The command will run, and we’re going to capture the result
of that command and store it in the curdate variable.

Next, let’s make sure rsync is actually installed, and install it if it’s not:

if [! -f /usr/bin/rsync]; then
 sudo apt install -y rsync
fi

Here, we’re simply checking to see whether rsync is not installed. If it’s not, we’ll install it via apt. This
is similar to how we checked for the existence of apache2 earlier in this chapter.

Now, we add the final line:

rsync -avb --delete --backup-dir=/backup/incremental/$curdate /src /target

You can definitely see the magic of variables in Bash now, if you haven’t already. We’re including
$curdate in our command, which is set to whatever the current date actually is. When we put it all
together, our script looks like this:

#/bin/bash
curdate=$(date +%m-%d-%Y)
if [! -f /usr/bin/rsync]; then
 sudo apt install -y rsync
fi
rsync -avb --delete --backup-dir=/backup/incremental/$curdate /src /target

This script, when run, will run an rsync job that will copy the contents from /src to /target. (Be sure
to change these directories to match the source directory you want to back up and the target where
you want to copy it to.) The beauty of this is that /target can be an external hard drive or network
share. So, in a nutshell, you can automate a nightly backup. This backup, since we used the -b option
along with --backup-dir, will allow you to retrieve previous versions of a file from the /backup/
incremental directory. Feel free to get creative here as far as where to place previous file versions
and where to send the backup.

Chapter 6 131

Of course, don’t forget to mark the script as executable, assuming it was saved with a name like backup.
sh:

chmod +x backup.sh

At this point, you can put this script in a cron job to automate its run. To do so, it’s best to put the script
in a central location where it can be found, such as in /usr/local/bin:

sudo mv backup.sh /usr/local/bin

You can consider creating a cron job for this script to be run periodically. We’ll cover that in Chapter
7, Controlling and Monitoring Processes, which is the very next chapter. With a cron job, you can set up
various tasks to run at different times in order to make your server essentially do your work for you.

Summary
In this chapter, we dived into a number of more advanced concepts relating to shell commands, such
as redirection, Bash history, command aliases, some command-line tricks, and more. Working with
the shell is definitely something you’ll continue to improve upon, so don’t be worried if you have any
trouble committing all of this knowledge to memory. After over 20 years of working with Linux, I’m still
learning new things myself. The main takeaway in this chapter is to serve as a starting point to broad-
en your command-line techniques and also serve as the basis for future exploration into the subject.

In the next chapter, we’ll take a look at managing processes, which will include job management,
taming misbehaving processes, and more. See you there!

Relevant videos
•	 Linux Crash Course – Bash History (LearnLinuxTV): https://linux.video/le-bash-history
•	 Linux Command-Line Tips & Tricks (LearnLinuxTV): https://linux.video/cli-tips

Further reading
•	 Comparison operators for Bash: https://learnlinux.link/c-ops
•	 Commandlinefu: https://learnlinux.link/c-fu
•	 Bash reference manual: https://learnlinux.link/bash-man

https://linux.video/le-bash-history
https://linux.video/cli-tips
https://learnlinux.link/c-ops
https://learnlinux.link/c-fu
https://learnlinux.link/bash-man

Boosting Your Command-line Efficiency132

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

7
Controlling and Managing
Processes

On a typical Linux server, there can be over a hundred processes running at any given time. The purposes
of these processes range from system services, such as the Network Time Protocol (NTP) service, to
processes that serve information to others, such as the Apache web server. As an administrator of
Ubuntu servers, you will need to be able to manage these processes, as well as managing the resources
available to them. In this chapter, we’ll take a look at process management, including the ps command,
managing job control commands, and more.

As we work through these concepts, we will cover the following topics:

•	 Managing jobs
•	 Understanding the ps command
•	 Changing the priority of processes
•	 Dealing with misbehaving processes
•	 Managing system processes
•	 Scheduling tasks with cron

To begin our exploration of managing processes, let’s take a look first at managing jobs. Not only will
this help us understand the concepts better, but it will also provide us with a better understanding of
backgrounding and foregrounding.

Managing jobs
Up until now, everything we have been doing on the shell has been right in front of us, from execution
to completion. We’ve installed applications, run programs, and walked through various commands.
Each time, we’ve had control of our shell taken from us, and we’ve only been able to start a new task
when the previous one had finished. For example, if we were to install the vim-nox package with the
apt install command, we would watch helplessly while apt takes care of fetching the package and
installing it for us.

Controlling and Managing Processes134

While this is going on, our cursor goes away and our shell completes the task for us without allowing
us to queue up another command. We can always open a new shell to the server and multitask by
having two windows open at once, each doing different tasks. But that’s likely not going to be the most
efficient method of multitasking when working with the command line.

Instead, we can actually background a process without waiting for it to complete while working
on something else. Then, we can bring that process back to the front to return to working on it or
to check whether or not it finished successfully. Think of this as a similar concept to a windowing
desktop environment, or user interfaces on the Windows or macOS operating systems. We can work
on an application, minimize it to get it out of the way, and then maximize it to continue working with
it. Essentially, that’s the same concept as backgrounding a process in a Linux shell.

So how exactly do you background and foreground a process? This concept can be somewhat difficult
to explain. In my opinion, the easiest way to learn a new concept is to try it out, and the easiest example
I can think of is by (yet again) using a text editor. I promise that this time, using a text editor as an
example won’t be boring. In fact, this example is extremely useful and may just become a part of
your daily workflow. To do this exercise, you can use any command-line text editor you prefer, such
as Vim or Nano. On Ubuntu Server, nano is usually installed by default, so you already have it if you
want to go with that. If you prefer to use Vim, feel free to install the vim-nox package if you haven’t
already installed it:

sudo apt install vim-nox

You can actually install vim rather than vim-nox, but I always default to vim-nox since it features built-
in support for scripting languages.

Again, feel free to use whichever text editor you feel comfortable with. In the following examples, I’ll
be using nano, but if you use vim, just replace nano with vim every time you see it.

Anyway, to see backgrounding in action, open up your text editor. Feel free to open a file or just start a
blank session. (If in doubt, type nano and press Enter.) With the text editor open, we can background
it at any time by pressing Ctrl + z on our keyboard.

If you are using vim instead of nano, you can only background vim when you are not in insert mode,
since it captures Ctrl + z rather than passing it to the shell.

Did you see what happened? You were immediately taken away from your editor and returned to the
shell so you can now get back to executing commands. You should have seen some output similar to
the following:

[1]+ Stopped nano

Here, we see the job number of our process, its status, and then the name of the process. Even though
the process of your text editor shows a status of Stopped, it’s still running. You can confirm this with
the following command:

ps au | grep nano

Chapter 7 135

In my case, I see the nano process running with a PID of 43231:

jay 43231 0.0 0.1 5468 3632 pts/0 T 11:27 0:00 nano

At this point, I can execute additional commands, navigate around my filesystem, and get additional
work done. When I want to bring my text editor back, I can use the fg command to foreground the
process, which will resume it. If I have multiple background processes, the fg command will bring
back the one I was working on most recently.

I gave you an example of the ps command to show that the process was still running in the background,
but there’s actually a dedicated command for that purpose, and that is the jobs command.

If you execute the jobs command, you’ll see in the output a list of all the processes running in the
background:

Figure 7.1: Running the jobs command after backgrounding two nano processes

The output shows that I have two nano sessions in use, one modifying file1.txt, and the other
modifying file2.txt. If I were to execute the fg command, that would bring up the nano session
that’s editing file2.txt, since that was the last one I was working in. That may or may not be the
one I want to return to editing, though. Since I have the job ID on the left, I can bring up a specific
background process by using its ID with the fg command:

fg 1

Knowing how to background a process can add quite a bit to your workflow. For example, let’s say,
hypothetically, that I’m editing a config file for a server application, such as Apache. While I’m editing
this config file, I need to consult the documentation (man page) for Apache because I forgot the syntax
for something. I could open a new shell and an SSH session to my server and view the documentation
in another window. This could get very messy if I open up too many shells. It would be much simpler
to background the current nano session, read the documentation, and then foreground the process
with the fg command to return to working on it, all from one SSH session!

To background a process, you don’t have to use Ctrl + z; you can actually background a process right
when you execute it by entering a command with the ampersand symbol (&) typed at the end. To
show you how this works, I’ll use htop as an example. Admittedly, this may not necessarily be the
most practical example, but it does work to show you how to start a process and have it backgrounded
right away.

Controlling and Managing Processes136

We might not have htop installed yet, but for now, feel free to install this package (if it isn’t already)
and then run it with the ampersand symbol:

sudo apt install htop
htop &

The first command, as you already know, installs the htop package on our server. With the second
command, I’m opening htop but backgrounding it immediately. What I’ll see when it’s backgrounded
is its job ID and process ID (more on this in the next section). Now, at any time, I can bring htop to the
foreground with fg. Since I just backgrounded it, fg will bring htop back since it considers it the most
recent. As you know, if it wasn’t the most recent, I could reference its job ID with the fg command to
bring it back even if it wasn’t my most recently used job. Go ahead and practice using the ampersand
symbol with a command and then bringing it back to the foreground. In the case of htop, it can be
useful to start it, background it, and then bring it back anytime you need to check the performance
of your server.

Keep in mind, though, that when you exit your shell, all your backgrounded processes will close. If
you have unsaved work in your text editors, you’ll lose what you were working on. For this reason,
if you utilize background processes, you may want to check to see if you have any pending jobs still
running by executing the jobs command before logging out.

In addition, you’ll probably notice that some applications background cleanly, while others don’t. In
the case of using a text editor and htop, those applications stay paused in the background, allowing
us to perform other tasks and then return to those commands later. However, some applications may
still spit out diagnostic text regularly in your main window, whether they’re backgrounded or not. To
get even more control over your Bash sessions, you can learn how to use a multiplexer, such as tmux
or screen, to allow these processes to run in their own session such that they don’t interrupt your
work. Going over the use of a program such as tmux is beyond the scope of this book, but it is a useful
utility to learn if you’re interested.

Being able to background and foreground a process allows us to manage tasks on the command line
more effectively, and is definitely useful. Now, we can expand this and look at viewing other processes
on the server, including those that we didn’t manually start such as a text editor. In the next section, we’ll
take a look at the ps command, which can help us understand what is actually running on our server.

Understanding the ps command
While managing our server, we’ll need to understand what processes are running and how to manage
them. Later in this chapter, we’ll work through starting, stopping, and monitoring processes. But
before we get to those concepts, we first need to be able to determine what is actually running on our
server. The ps command allows us to do this.

Viewing running processes with ps
When executed by itself, the ps command will show a list of processes run by the user who called
the command:

Chapter 7 137

Figure 7.2: The output of the ps command, when run as a normal user and with no options

In Figure 7.2, you can see that when I ran the ps command as my own user with no options, it showed
me a list of processes that I am running as myself. In this case, I have a vim session open (running in
the background), and in the last line, we also see ps itself, which is also included in the output.

On the left side of the output, you’ll see a number for each of the running processes. This is known as
the Process ID (PID), which we mentioned in the Managing jobs section. Before we continue on, the
PID is something that you really should be familiar with, so we may as well cover it right now.

Each process running on your server is assigned a PID, which differentiates it from other processes
on your system. You may understand a process as vim, or top, or some other name. However, our
server knows processes by their ID. When you open a program or start a process, it’s given a PID by
the kernel. As you work on managing your server, you’ll find that the PID is useful to know, especially
for the commands we’ll be covering in this very chapter. If you want to kill a misbehaving process, for
example, a typical workflow would be for you to find the PID of that process and then reference that
PID when you go to kill the process (which I’ll show you how to do in a later section). PIDs are actually
more complex than just a number assigned to running processes, but for the purposes of this chapter,
that’s the main purpose we’ll need to remember.

You can also use the pidof command to find the PID of a process if you know the name of it. For
example, I showed you a screenshot of a vim process running with a PID of 1385. You can also do so
by running the following command:

pidof vim

The output will give you the PID(s) of the process without you having to use the ps command.

Configuring arguments to ps
Continuing with the ps command, there are several useful arguments you can give in order to change
the way in which it produces an output. If you use the a option, you’ll see more information than you
normally would:

ps a

Controlling and Managing Processes138

This will produce an output something like the following:

Figure 7.3: The output of the ps a command

With ps a, we’re seeing the same output as before, but with additional information, as well as column
headings at the top. We now see a heading for PID, TTY, STAT, TIME, and COMMAND. From this new output,
you can see that the vim processes I have running are editing a file named testfile.txt. This is great
to know, because if I had more than one vim session open and one of them was misbehaving, I would
probably want to know which one I specifically needed to stop.

We already saw the PID and COMMAND fields, although we didn’t see a formal heading at the top. The
PID column we’ve already covered, so I won’t go into any additional detail about that. The COMMAND
field tells us the actual command being run, which is very useful if we either want to ensure we’re
managing the correct process or to see what a particular user is running (I’ll demonstrate how to
display processes for other users soon).

The STAT, field is new; we didn’t see it when we ran ps by itself. The STAT field gives us the status code
of the process, which refers to which state the process is currently in. The state can be uninterruptible
sleep (D), defunct (Z), stopped (T), interruptible sleep (S), and in the run queue (R). There is also paging
(W), but that is not used anymore, so there’s no need to cover it. Uninterruptible sleep is a state in
which a process is generally waiting on input and cannot handle additional signals (we’ll briefly talk
about signals later on in this chapter). A defunct process (also referred to as a zombie process) has,
for all intents and purposes, finished its job but is waiting on the parent to perform cleanup. Defunct
processes aren’t actually running, but remain in the process list and should normally close on their
own. If such a process remains in the list indefinitely and doesn’t close, it can be a candidate for the
kill command, which we will discuss later. A stopped process is generally a process that has been
sent to the background, which will be discussed in the next section. Interruptible sleep means that
the program is idle: it’s waiting for input in order to awaken.

The TTY column tells us which TTY the process is attached to. A TTY refers to a teletypewriter, which
is a term used from a much different time period. In the past, during the time of big mainframes,
users would use such computers using “terminals” – a device consisting of a monitor and keyboard,
connected (via the wire) to the mainframe. Such devices could only display the output received from
the mainframe, and receive data typed on the keyboard. Teletypewriter was the term used to refer to
such devices. Obviously, we don’t use machines like these nowadays, but the concept is similar from
a virtual standpoint.

Chapter 7 139

On our server, we’re using our keyboard to send input to a device that then displays output to another
device. In our case, the input device is our keyboard and the output device is our screen, which is either
connected directly to our server or is located on our computer, which is connected to our server over
a service such as SSH. On a Linux system, most processes run on a TTY, which is (for all intents and
purposes) a terminal that grabs input and manages the output, similar to a teletypewriter in a virtual
sense. A terminal is our method of interacting with our server.

In Figure 7.3, we have a process running on a TTY of tty1, and the other processes are running on
pts/0. The TTY we see is the actual terminal device, and pts references a virtual (pseudo) terminal
device. Our server is actually able to run several tty sessions, typically one to seven. Each of these
can be running its own programs and processes. To understand this better, try pressing Ctrl + Alt +
any function key, from F1 through F7 (if you have a physical keyboard plugged into a physical server).
Each time, you should see your screen cleared and then moved to another terminal. Each of these
terminals is independent of one another. Each of your function keys represents a specific TTY, so by
pressing Ctrl + Alt + F6, you’re switching your display to TTY 6.

Essentially, you’re switching from TTY 1 through to TTY 7, with each being able to contain its own
running processes. If you run ps a again, you’ll see any processes you start on those TTYs show up in
the output as a tty session, such as tty2 or tty4. Processes that you start in a terminal emulator will
be given a designation of pts, because they’re not running in an actual TTY, but rather a pseudo-TTY.

This was a long discussion for something that ends up being simple (TTY or pseudo-TTY), but with
this knowledge, you should be able to differentiate between a process running on the actual server
or through a shell.

Continuing, let’s take a look at the TIME field of our ps command output. This field represents the total
amount of time the CPU has been utilized for that particular process. However, the time is 0:00 for
each of the processes in the screenshot I’ve provided. This may be confusing at first. In my case, the
vim processes in particular have been running for about 15 minutes or so since I took the screenshot,
and they still show 0:00 utilization time even now. Actually, this isn’t the amount of time the process
has been running, but rather the amount of time the process has been actively engaging with the CPU.
In the case of vim, each of these processes is just a buffer with a file open. For the sake of comparison,
the Linux machine I’m writing this chapter on has a process ID of 759 with a time of 92:51. PID 759
belongs to my X server, which provides the foundation for my graphical user interface (GUI) and
windowing capabilities. However, this laptop currently has an uptime of 6 days and 22 hours as I type
this, which is roughly equivalent to 166 hours, which is not the same amount of time that PID 759 is
reporting in its TIME entry. Therefore, we can deduce that even though my laptop has been running for
6 days straight, the X server has only utilized 92 hours and 51 minutes of actual CPU time. In summary,
the TIME column refers to the amount of time a process needs the CPU in order to calculate something
and is not necessarily equal to how long something has been running, or for how long a graphical
process is showing on your screen.

Let’s continue on with the ps command and look at some additional options. First, let’s see what we get
when we add the u option to our previous example, which gives us the following example command:

ps au

Controlling and Managing Processes140

This will produce an output that will look similar to the following:

Figure 7.4: The output of the ps au command

When you run it, you should notice the difference from the ps a command right away. With this
variation, you’ll see processes listed that are being run by your user ID, as well as other users. When I
run it, I see processes listed in the output for my user (jay), as well as one for root. The u option will be
a common option you’re likely to use, since most of the time while managing servers, you’re probably
more interested in keeping an eye on what kinds of shenanigans your users are getting themselves
into. But perhaps the most common use of the ps command is the following variation:

ps aux

With the x option added, we’re no longer limiting our output to processes within a TTY (either native
or pseudo). The result is that we’ll see a lot more processes, including system-level processes that
are not tied to a process we started ourselves. Go ahead and try it. In practice, though, the ps aux
command is most commonly used with grep to look for a particular process or string. For example,
let’s say you want to see a list of all nginx worker processes. To do that, you may execute a command
such as the following:

ps aux | grep nginx

Here, we’re executing the ps aux command as before, but we’re piping the output into grep, where
we’re looking only for lines of output that include the string nginx. In practice, this is the way I often
use ps, as well as the way I’ve noticed many other administrators using it. With ps aux, we are able
to see a lot more output, and then we can narrow that down with search criteria by piping into grep.
However, if all we wanted to do was to show processes that have a particular string, we could also do
the following:

ps u -C nginx

This would produce output containing a list of processes matching nginx, and related details. Another
useful variation of the ps command is to sort the output by sorting the processes using the most CPU
first:

ps aux --sort=-pcpu

Chapter 7 141

Unfortunately, that command shows a lot of output, and we would have to scroll back to the top in
order to see the top processes. Depending on your terminal, you may not have the ability to scroll
back very far (or at all), so the following command will narrow it down further:

ps aux --sort=-pcpu | head -n 5

Now that is useful! With that example, I’m using the ps aux command with the --sort option, sorting
by the percentage of CPU utilization (-pcpu). Then I’m piping the output into the head command,
where I’m instructing it to show me only five lines (-n 5). Essentially, this is giving me a list of the top
five processes that have used the most CPU since boot time. In fact, I can do the same, but with the
most-used memory instead:

ps aux --sort=-pmem | head -n 5

If you want to determine which processes are misbehaving and using a non-ordinary amount of
memory or CPU, those commands will help you narrow it down. The ps command is a very useful
command for your admin toolbox. Feel free to experiment with it beyond the examples I’ve provided;
you can consult the man pages for the ps command to learn even more tricks. In fact, the second
section of the man page for ps (under examples) gives you even more neat examples to try out.

Now that we know how to inspect running processes, in the next section, we’ll take a look at how to
change the priority of the processes to ensure those that are more important are given extra attention
by the CPU.

Changing the priority of processes
Processes on a Linux system can be run with an altered priority, giving some processes more priority
and others less. This gives you, the administrator, full reign when it comes to ensuring that the most
important processes on the system are running with an adequate level of prioritization. There are
dedicated commands for this purpose: nice and renice. These commands allow you to launch a
process with a specific priority, or change the priority of a process that’s already running.

Nowadays, manually editing the priority of a process is something administrators will find themselves
doing less often than they used to. A processor with 32 cores (or many more) is not all that uncommon,
and neither is hundreds of gigabytes of RAM. Servers nowadays are certainly more powerful than they
used to be, and are nowhere near as resource-starved as machines of old. Many servers (such as virtual
machines) and containers are dedicated to a single task, so process tuning may not be of extreme
value anymore. However, data processing firms and companies utilizing deep learning functions may
find themselves needing to fine-tune some things.

Regardless of whether or not prioritizing processes is something that will be immediately useful to
you, it’s a good idea to at least understand the concept just in case you do find yourself needing to
increase or decrease the priority of a process some day. Let’s revisit the ps command, this time with
the -l argument:

ps -l

Controlling and Managing Processes142

The output of this command will appear as follows:

Figure 7.5: The output of the ps -l command

With the output of the ps -l command, notice the PRI and NI columns. PRI refers to the priority, and
NI pertains to the “niceness” value, which we’ll discuss in more detail later in this section. In this
example, each process that I’m running has a PRI of 80, and an NI of 0. I didn’t change or alter any of
these; these are the values that I get when I start processes with no special tweaks. A PRI value of 80
is the starting value for that value on all processes, and will change as we increase or decrease the
niceness value.

As I mentioned, we have dedicated commands that allow us to alter priorities, nice and renice. To
determine which to use, it all comes down to whether or not the process is already running. With
regard to the processes listed in Figure 7.5, we would want to use renice to change the priority for
those, since they’re all already running. If we wanted to launch a process with a specific priority right
from the beginning, we would use nice instead.

For example, let’s change the process of the vim session I have running. Sure, this is a somewhat lame
example, as vim isn’t a very important process. In the real world, you’d be prioritizing processes that
are actually important. In my case, since the vim process has a PID of 1789, the command I would
need to run in order to change the niceness would become this:

renice -n 10 -p 1789

The output of this command will appear as follows:

Figure 7.6: Changing the priority of a process with renice

Chapter 7 143

If we run ps -l again, we can see the new nice value for vim:

Figure 7.7: The output of the ps -l command after changing the priority of a process

The new nice value of 10 now shows up for vim under NI, and the PRI value has increased to 90. Now,
this instance of vim will run at a lower priority than my other tasks, the reason being that the higher
the nice value, the lower the priority. Notice that I didn’t use sudo with the command when I changed
the priority. In this example, that’s okay because I’m increasing the nice value of the process, and that’s
allowed. However, let’s try to decrease the nice value without sudo, using the following command:

renice -n 5 -p 1789

As you can see in the following output, I won’t be as successful:

Figure 7.8: Attempting to decrease the priority of a process

My attempt to decrease the nice value from 10 down to 5 was blocked. If I were able to lower the
niceness, then my process would be running at a higher priority. Instead, I received a Permission
denied error. So essentially, users are allowed to increase the niceness of their processes, but are not
allowed to decrease it, not even for processes they’ve initiated themselves. If you wish to decrease the
nice value, you’ll need to do so with sudo. So essentially, if you want to be “nicer,” you can go ahead
and do so. If you wish to be “meaner,” you’ll need root privileges. In addition, a user won’t be able to
change the priority of a process they don’t own. So, if you attempt to use renice to change the niceness
of a task running as a different user, you’ll receive an Operation not permitted error.

At this point, we know how to re-prioritize our running processes with renice. Now, let’s take a look
at starting a new process with a specific priority with nice. Consider the following command:

nice -n 10 vim

Controlling and Managing Processes144

Here, we’re launching a new instance of vim, but with the priority set to a specific value right from
the start. If we want to change the priority of vim again later, we’ll need to use renice. As I mentioned
earlier, nice is used to launch a new process with a specific priority, and renice is for changing the
priority of a pre-existing process. In this example, we launched vim and set its nice value to 10 in one
command.

Changing the priority of a text editor such as vim may seem like an odd choice for a test case, and it is.
But the vim editor is harmless, as the likelihood of us changing the priority of it leading to a system
halt is extremely minimal. There’s no practical reason I can think of where it would be useful to re-
prioritize something like a text editor. The takeaway, though, is that you can change the priority of
the processes running on your server. On a real server, you may have an important process that runs
and generates a report, and that report must be delivered on time. Or perhaps you have a process
that generates an export of data that a client needs to have in order to make an on-time deliverable.
So, if you think of the bigger picture, you can replace vim with the name of a process that is actually
important for you or your organization.

You might be wondering what “nice” means in the context of the nice and renice commands. The “nice”
number essentially refers to how nice a process is to other users. The higher the nice value, the lower
the priority. So, a value of 20 is nicer than a value of 10. In that case, processes with a niceness of 20
are running at a lower priority, and so are kinder to the other processes on the system. The niceness
can range from -20 to 19. A process with a nice value of -20 is the highest priority possible, while 19
is the lowest priority it can have. The entire system is quite a bit more complicated than this simple
description. Although I refer to the nice value as the priority, it actually isn’t. The nice value is used to
calculate the actual priority. But for now, if we simplify the nice value to be representative of the priority,
and the nice value to equate to a lower priority, the higher the number gets, that’s enough for now.

So far, we’ve been using the nice and renice commands along with the -n option to set the nice values
directly. It may be interesting to note though that you can simplify the renice command and leave
out the -n option:

renice 10 42467

That command sets the nice value of the process to a positive 10, similar to our other examples. We
can also use a negative number for the niceness if we want to increase the priority:

sudo renice -10 42467

Although it doesn’t save us much typing to leave out the -n option, now you know that it is a possibility.
The other difference with that example was that I needed to use sudo since I’m decreasing the nice
value (more on that later).

When it comes to the nice command, we can also leave out the -n option, but the command works a
bit differently in this regard. The following won’t work:

nice 15 vim

Chapter 7 145

The syntax of nice is a bit different, so giving it a positive number directly won’t work as it does with
renice. For that, we’ll need to add a hyphen in front:

nice -15 vim

When you look at that command, you may assume we’re applying a negative number. Actually, that’s
not true. Since the syntax is different with nice, the -15 value we used results in a positive 15. We
needed the hyphen in front of the value to signify to nice that we’re applying a value as an option.
If we actually do want to use a negative value with nice while also avoiding the -n option, we would
need to use two hyphens:

nice --10 vim

The difference in syntax between the two commands with the -n option is a bit confusing in my
opinion, so I recommend simply using the -n option with nice and renice, as that’s going to be more
uniform between them:

nice -n 10 vim
sudo nice -n -10 vim
renice -n 10 42467
sudo renice -n -10 42467

Those examples show both nice and renice using the -n option, and setting both positive and negative
values. Since the -n option is used the same way between the two commands, it may be easier to focus
on committing that to memory rather than focusing on the specifics. As previously discussed, I used
sudo with commands that set a negative value for niceness, since only root can change a process to,
or start a process with, a niceness below 0. You’ll receive the following error if you try to do it anyway:

nice: cannot set niceness: Permission denied

This type of protection is somewhat important, because you may have some users who feel as though
their processes are the most important, and try to prioritize them all the way to -19. At the end of the
day, it’s better for a system administrator to make decisions on which processes are allowed to reach
a niceness value in the negative.

As an administrator of Ubuntu servers, it’s up to you to decide which processes should be running, and
at what priority. You’ll then determine the best way to achieve the exact system state that’s appropriate,
and tuning process priority may be a part of that. If nothing else, learning the nice and renice
commands gives you another utility for your toolset.

Dealing with misbehaving processes
Regarding the ps command, by this point you know how to display processes running on your server,
as well as how to narrow down the output by string or resource usage. But what can you actually do
with that knowledge? As much as we hate to admit it, sometimes the processes our server runs fail
or misbehave and you need to restart them. If a process refuses to close normally, you may need to
kill that process. In this section, we introduce the kill and killall commands to serve that purpose.

Controlling and Managing Processes146

The kill command accepts a PID as an argument and attempts to close a process gracefully. In a
typical workflow where you need to terminate a process that won’t do so on its own, you will first use
the ps command to find the PID of the culprit. Then, knowing the PID, you can attempt to kill the
process. For example, if PID 31258 needed to be killed, you could execute the following:

sudo kill 31258

If all goes well, the process will end. You can restart it or investigate why it failed by perusing its logs.

To better understand what the kill command does, you first will need to understand the basics of
Linux signals. Signals are used by both administrators and developers and can be sent to a process
either by the kernel, another process, or manually with a command. A signal instructs the process
of a request or change, and in some cases, to completely terminate. An example of such a signal is
SIGHUP, which tells processes that their controlling terminal has exited. One situation in which this
may occur is when you have a terminal emulator open, with several processes inside it running. If
you close the terminal window (without stopping the processes you were running), they’ll be sent
the SIGHUP signal, which basically tells them to quit (essentially, it means the shell quit or hung up).

Other examples include SIGINT (where an application is running in the foreground and is stopped
by pressing Ctrl + c on the keyboard) and SIGTERM, which, when sent to a process, asks it to cleanly
terminate. Yet another example is SIGKILL, which forces a process to terminate uncleanly. In addition
to a name, each signal is also represented by a value, such as 15 for SIGTERM and 9 for SIGKILL. Going
over each of the signals is beyond the scope of this chapter (the advanced topics of signals are mainly
only useful for developers), but you can view more information about them by consulting the man
page if you’re curious:

man 7 signal

For the purposes of this section, the two types of signals we are most concerned about are SIGTERM(15)
and SIGKILL(9). When we want to stop a process, we send one of these signals to it, and the kill
command allows us to do just that. By default, the kill command sends signal 15 (SIGTERM), which
tells the process to cleanly terminate. If successful, the process will free its memory and gracefully
close. With our previous example kill command, we sent signal 15 to the process, since we didn’t
clarify which signal to send.

Terminating a process with SIGKILL(9) is considered an extreme last resort. When you send signal
9 to a process, it’s the equivalent of ripping the carpet out from underneath it or blowing it up with a
stick of dynamite. The process will be force-closed without giving it any time to react at all, so it’s one
of those things you should avoid using unless you’ve literally tried absolutely everything you can think
of. In theory, sending signal 9 can cause corrupted files, memory issues, or other shenanigans to occur.
As for me, I’ve never actually run into long-term damage to software from using it, but theoretically it
can happen, so you want to only use it in extreme cases. One case where such a signal may be necessary
is regarding defunct or a zombie process in a situation where they don’t close on their own. These
processes are basically dead already and are typically waiting on their parent processes to reap them.

Chapter 7 147

If the parent process never attempts to do so, they will remain on the process list. This in and of itself
may not really be a big issue, since these processes aren’t technically doing anything. But if their
presence is causing problems and you can’t kill them, you could try to send SIGKILL to the process.
There should be no harm in eliminating a zombie process, but you would want to give them time to
be reaped first.

To send signal 9 to a process, you would use the -9 option of the kill command. It should go without
saying, though, to make sure you’re executing it against the proper process ID:

sudo kill -9 31258

Just like that, the process with a PID of 31258 will vanish without a trace. Anything it was writing to
will be in limbo, and it will be removed from memory instantly. If, for some reason, the process still
manages to stay running (which is extremely rare), you probably would need to reboot the server to
get rid of it, which is something I’ve only seen in a few, very rare cases. An example of this is a zombie
process, which is a process that shows up in the process list but isn’t impacted by having signals sent
to it, since such a process won’t be scheduled for CPU time anyway. When it all comes down to it, if
kill -9 doesn’t get rid of the process, nothing will.

Another method of killing a process is with the killall command, which is probably safer than the
kill command (if for no other reason than there’s a smaller chance you’ll accidentally kill the wrong
process). Like kill, killall allows you to send SIGTERM to a process, but unlike kill, you can do so
by name. In addition, killall doesn’t just kill one process, it kills any process it finds with the name
you’ve given it as an option. To use killall, you would simply execute killall along with the name
of a process:

sudo killall myprocess

Just like the kill command, you can also send signal 9 to the process as well:

sudo killall -9 myprocess

Again, use that only when necessary. In practice, though, you probably won’t use killall -9 very
often (if ever), because it’s rare for multiple processes under the same process name to become locked.
If you need to send signal 9, stick to the kill command if you can.

The kill and killall commands can be incredibly useful in the situation of a stuck process, but
these are commands you would hope you don’t have to use very often. Stuck processes can occur in
situations where applications encounter a situation from which they can’t recover, so if you constantly
find yourself needing to kill processes, you may want to check for an update to the package responsible
for the service or check your server for hardware issues.

In the next section, let’s take a look at system processes that run in the background and provide a
service to us or our users, such as a web server process or DHCP server.

Controlling and Managing Processes148

Managing system processes
System processes, also known as daemons, are programs that run in the background on your server
and are typically started automatically when it boots. We don’t usually manage these services directly
as they run in the background to perform their duty, with or without needing our input. For example,
if our server is a DHCP server and runs the isc-dhcp-server process, this process will run in the
background, listening for DHCP requests and providing new IP assignments to them as they come
in. Most of the time, when we install an application that runs as a service, Ubuntu will configure it
to start when we boot our server, so we don’t have to start it ourselves. Assuming the service doesn’t
run into an issue, it will happily continue performing its job forever until we tell it to stop. In Linux,
services are managed by its init system, also referred to as PID 1 since the init system of a Linux system
always receives that PID. In recent years, the way in which processes are managed in Ubuntu Server
has changed considerably. Ubuntu has switched to systemd for its init system, which was previously
Upstart until a few years ago. Ubuntu 16.04 was the first LTS release of Ubuntu with systemd, and
this continues to be used today in Ubuntu 22.04. Since systemd has been the standard for quite some
time now, we’ll focus our attention on the commands used with it to manage our services. Older init
systems are aging out.

With systemd, services are known as units, but for all intents and purposes, the terms “service,”
“daemon,” and “unit” all essentially mean the same thing. Since I started using Linux over 20 years
ago, I still refer to systemd units as services, out of habit. To help us manage these “units,” systemd
includes the systemctl command, which allows you to start, stop, and view the status of units on
our server. To help illustrate this, I’ll use OpenSSH as an example. The name of the unit doesn’t really
matter, as the syntax of the systemctl command is the same regardless of the name of the unit we’re
interacting with. You can use systemctl to start, stop, or restart your Apache instance, your database
server, or even use it to restart the entire networking stack. The systemctl command, with no options
or parameters, assumes the list-units option, which dumps a list of units to your shell. This can be
a bit messy, though, so if you already know the name of a unit you’d like to search for, you can pipe
the output into grep and search for a string. This is handy in a situation where you may not know the
exact name of the unit, but you know part of it:

systemctl | grep ssh

If you want to check the health of a unit, the best way is to actually use the status keyword, which
will show you some very useful information regarding the unit. This information includes whether
or not the unit is running, if it’s enabled (meaning it’s configured to start at boot time), as well as the
most recent log entries for the unit:

systemctl status ssh

Chapter 7 149

This command will produce an output something like the following:

Figure 7.9: Checking the status of a unit with systemctl

Most of the time, you can actually check the status of units without needing root access, but you may
not see all the information available. In the screenshot, you can see several log entries for the ssh
service, but some units do not show those entries without sudo. With the ssh unit in particular, we
see the log entries when checking the status with or without sudo.

Another thing you may notice in the screenshot is that the name of the ssh unit is actually ssh.service,
but you don’t need to include the .service part of the name, since that is implied by default. Sometimes,
while viewing the status of a process with systemctl, the output may be condensed to save space on
the screen. To avoid this and see the full log entries, add the -l option:

systemctl status -l ssh

Another thing to pay attention to is the vendor preset of the unit. Most packages in Ubuntu that
include a service file for systemd will enable it automatically, but other distributions typically don’t
start and enable units by default (such as CentOS). In the case of the ssh example, you can see that
the vendor preset is set to enabled. This means that once you install the openssh-server package,
the ssh.service unit will automatically be enabled. You can confirm this by checking the Active
line (where the example output says active (running)), which tells us that the unit is running. The
Loaded line clarifies that the unit is enabled, so we know that the next time we start the server, ssh
will be loaded automatically. Although systemd units are typically enabled and started automatically
in Ubuntu when installing their package, this can still vary. When you install a new package, make
sure you check the status of the unit, so you’ll be aware of its settings.

Controlling and Managing Processes150

Starting and stopping a unit is just as easy; all you have to do is change the keyword you use with
systemctl to start or stop in order to have the desired effect:

sudo systemctl stop ssh
sudo systemctl start ssh

There are additional keywords, such as restart (which takes care of the previous two command
examples at the same time), and some units even feature reload, which allows you to activate new
configuration settings without needing to bring down the entire application. An example of why this is
useful is with Apache, which serves web pages to local or external users. If you stop Apache, all users
will be disconnected from the website you’re serving. If you add a new site, you can use reload rather
than restart, which will activate any new configuration you may have added without disturbing the
existing connections. We’ll take a look at Apache in Chapter 14, Serving Web Content, so don’t worry
too much about Apache right now. It’s just a good example of a unit with additional functionality.
Not all units feature a reload option, so you should check the documentation of the application that
provides the unit to be sure.

Since I mentioned starting and stopping the unit for OpenSSH in the previous examples, an interesting
aside is that doing so will not disconnect a current SSH session to the server, should you have one
open. If you stop the ssh service, it won’t drop your connection. Open connections are maintained,
and stopping SSH only prevents new connections from happening. Therefore, SSH is different when
compared to other units (such as Apache) in that existing connections aren’t dropped when restarting
the unit.

As I mentioned before, if you want a unit to automatically start when the server boots, the unit will
need to be enabled. Units are automatically enabled most of the time, but in case you find one that
isn’t enabled, you can enable it with the enable keyword:

sudo systemctl enable ssh

It’s just as easy to disable a unit as well:

sudo systemctl disable ssh

You can combine the process of not only enabling a unit, but also starting it at the same time:

sudo systemctl enable --now ssh

The --now argument tells systemctl to start the unit immediately after enabling it, rather than waiting
for the next boot to do so or having you also run the start argument in a separate command.

Even though systemd is primarily used for managing units, it’s actually an entire platform that manages
multiple things on a Linux system, including DNS resolving, networking, and more. systemd even
handles logging as well, and it provides us with the journalctl command, which we can use to view
logging info (this is also why the output of systemctl status ssh was able to show us log entries).

Chapter 7 151

We’ve discussed logging a bit in Chapter 4, Navigating and Essential Commands, and we’ll do so in more
detail during Chapter 22, Troubleshooting Ubuntu Servers (which will also include further discussion of
the journalctl command).

For now, just understand that systemd is quite extensive when it comes to the number of things it helps
us manage. For the purposes of this chapter, however, if you understand how to start, stop, enable,
disable, and check the status of a unit, you’re good to go for now.

Scheduling tasks with cron
Earlier in this chapter, we worked through starting processes and enabling them to run in the
background, and ensuring they start as soon as the server boots. In some cases, you may need an
application to perform a job at a specific time, rather than to have it always running in the background.
This is where cron comes in. With cron, you can set a process, program, or script to run at a specific
time, down to the minute. Each user is able to have their own set of cron configurations (known as
a crontab), which can perform any function that a user would be able to do normally. The root user
has a crontab as well, which allows system-wide administrative tasks to be performed. Each crontab
includes a list of cron jobs (one per line), which we’ll get into shortly. To view a crontab for a user, we
can use the crontab command:

crontab -l

With the -l option, the crontab command will show you a list of jobs for the user who executed the
command. If you execute it as root, you’ll see the root account’s crontab. If you execute it as user jdoe,
you’ll see the crontab for jdoe, and so on. If you want to view a crontab for a user other than yourself,
you can use the -u option and specify a user, but you’ll need to execute it as root or with sudo to view
the crontab for someone other than the user you’re logged in as:

sudo crontab -u jdoe -l

By default, no user has a crontab until you create one or more jobs. Therefore, you’ll probably see
output such as the following when you check for your current users:

no crontab for jdoe

To create a cron job, first log in as the user account you want the task to run under. Then, issue the
following command:

crontab -e

Controlling and Managing Processes152

If you have more than one text editor on your system, you may see output similar to the following:

Figure 7.10: Selecting an editor for use with the crontab command

In this case, you’ll simply press the number corresponding to the text editor you’d like to use when
creating your cron job. To set an environment variable that specifies a specific editor and edit your
crontab with a single command, the following command will do exactly that:

EDITOR=vim crontab -e

In this example, you can replace vim with whatever text editor you prefer. At this point, you should
be placed in a text editor with your crontab file open. The default crontab file for each user features
some helpful comments that give you some useful information regarding how cron works. To add
a new job, you would scroll to the bottom of the file (after all the comments) and insert a new line.
Formatting is very particular here, and the example comments in the file give you some clue as to
how each line is laid out. Specifically, this part:

m h dom mon dow command

Each cron job has six fields, each separated by at least one space or tab spaces. If you use more than
one space, or tab, cron is smart enough to parse the file properly. In the first field, we have the minute
in which we would like the job to occur. In the second field, we place the hour in the 24-hour format,
from 0-23. The third field represents the day of the month. In this field, you can place a 5 (5th of the
month), 23 (23rd of the month), and so on. The fourth field corresponds to the month, such as 3 for
March or 12 for December. The fifth field is the day of the week, numbered from 0 to 6 to represent
Sunday through Saturday. Finally, in the last field, we have the command to be executed. A few example
crontab lines are as follows:

3 0 * * 4 /usr/local/bin/cleanup.sh
* 0 * * * /usr/bin/apt update
0 1 1 * * /usr/local/bin/run_report.sh

With the first example, the cleanup.sh script, located in /usr/local/bin, will be run at 12:03 a.m. every
Thursday. We know this because the minute column is set to 3, the hour column is set to 0 (midnight),
the day column is 4 (Thursday), and the command column shows a fully qualified command of /usr/
local/bin/cleanup.sh.

Chapter 7 153

What does it mean for a command to be fully qualified? Basically, a command being fully qualified
means that the entire path to the binary responsible for the command is completely typed out. In the
second example, we could have simply typed apt update for the command and that would’ve probably
worked just fine. However, not including the full path to the program is considered bad cron etiquette.
While the command may have worked without being fully qualified, its success would depend on the
application being found in the path of the user who is calling it. Not all servers are set up the same, so
this might not work depending on how the shell is set up. If you include the full path, the job should
run regardless of how the underlying shell is configured.

If you don’t know what the fully qualified command is, all you have to do is use the which command.
This command, when used with the name of a command you’d like to run, will give you the fully
qualified command if the command is located on your system.

Continuing with the second example, we’re running /usr/bin/apt update to update our server’s
repository index every morning at midnight. The asterisks on each line refer to any, so with the minute
column being simply *, that means that this task is eligible for any minute. Basically, the only field we
clarified was the hour field, which we set to 0 in order to represent 12:00 a.m.

With the third example, we’re running the /usr/local/bin/run_report.sh script on the first day of
every month at 01:00 a.m. If you notice, we set the third column (day of month) to 1, which is the same
as February 1st, March 1st, and so on. This job will be run if it’s the first day of the month, but only if
the current time is also 01:00 a.m., since we filled in the first and second columns, which represent
the minute and hour, respectively.

Once you finish editing a user’s crontab and save it, cron is updated and, from that point forward,
will execute the task at the time you select. The crontab will be executed according to the current
time and date on your server, so you want to make sure that that is correct as well, otherwise you’ll
have your jobs execute at unexpected times. You can view the current date and time on your server
by simply issuing the date command.

To get the hang of creating jobs with cron, the best way (as always) is to practice. The second example
cron job is probably a good one to experiment with, as updating your repository index isn’t going to
hurt anything.

Summary
In this chapter, we learned how to manage processes. We began with a look at the ps command, which
we can use to view a list of processes that are currently running. We also took a look at managing
jobs, as well as killing processes that, for one reason or another, are misbehaving. We also discussed
methods of changing the priority of a process, to ensure we have full control over which processes
are given more processing time, and we also learned how we can schedule things to run at a later
time and date with cron.

In Chapter 8, Monitoring System Resources, we’ll take a look at some ways we can keep an eye on
the resources that are available on our server, where we will learn how to check disk usage and
understand memory usage and swap space, as well as a looking at some utilities that can make resource
management a breeze.

Controlling and Managing Processes154

Relevant videos
•	 Getting started with tmux (LearnLinuxTV): https://linux.video/tmux-guide
•	 Backgrounding and foregrounding processes in Linux (LearnLinuxTV):

https://linux.video/bg-fg

Further reading
•	 Ham Vocke, A Quick and Easy Guide to tmux: https://learnlinux.link/tmux-article
•	 Tmux cheat sheet and quick reference: https://learnlinux.link/tcs
•	 crontab guru: https://learnlinux.link/ctg

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/tmux-guide
https://linux.video/bg-fg
https://learnlinux.link/tmux-article
https://learnlinux.link/tcs
https://learnlinux.link/ctg
https://packt.link/LWaZ0

8
Monitoring System Resources

In the last chapter, we learned how we can manage tasks that are running on our server. We now know
how to see what’s running in the background, how to enable or disable a unit from starting at boot
time, and also how to schedule tasks to run in the future. But in order for us to be able to effectively
manage the tasks that our servers carry out, we also need to keep an eye on system resources. If we
run out of RAM, fill up our disk, or overload our CPU, then a server that normally processes tasks
very efficiently might come to a screeching halt. In this chapter, we’ll take a look at these resources
and how to monitor them.

Our discussion on resource management will include:

•	 Viewing disk usage
•	 Monitoring memory usage
•	 Understanding load average
•	 Viewing resource usage with htop

One resource that is extremely important on our servers is storage, and keeping track of such things
as available disk space is critical – even the most powerful server you can purchase would be unable
to function without free disk space. We’ll take a look at some ways to monitor disk usage in the next
section.

Viewing disk usage
Keeping an eye on your storage is always important, as no one enjoys getting a call in the middle of
the night saying that a server encountered an issue, especially not something that could’ve been easily
avoided, such as a filesystem growing too close to being full. Managing storage on Linux systems
is simple once you master the related tools, the most useful of which I’ll go over in this section. In
particular, we’ll look at tools we can use to answer the question “what’s using up all the disk space?”,
which is the most common question that comes up when dealing with disk usage.

First, let’s look at the df command.

Monitoring System Resources156

Using df
The df command is likely always going to be your starting point in situations where you don’t already
know which volume or mount point is becoming full. When executed, it gives you a high-level overview,
so it’s not necessarily useful when you want to figure out who or what in particular is hogging all your
space. However, when you just want to list all your mounted volumes and see how much space is left
on each, df fits the bill. By default, it shows you the information in bytes. However, I find it easier to
use the -h option with df, which will show output that’s more human-readable, and by doing so you’ll
see information that’s a bit easier to read. Go ahead and give it a try:

df -h

This should produce an output that looks something like the following:

Figure 8.1: Output from the df -h command

The output will look different depending on the types of disks and mount points associated with your
system. In the screenshot, you’ll see that the root filesystem is located on /dev/mapper/ubuntu--vg-
ubuntu--lv. We know this because under the column Mounted on we see that the mount point is set
to a single forward slash (/). As we discussed in Chapter 4, Navigating and Essential Commands, this
single forward slash refers to the beginning of the filesystem (also referred to as the root filesystem).
In my case, this is an LVM volume, which is why we have a device with such a long name, beginning
with /dev/mapper. Let’s not worry about LVM at this point – we’ll discuss that later. But for now, just
keep in mind that the single forward slash refers to the beginning of the filesystem, and the device
name on the left refers to the actual device that’s mounted there.

The actual device name varies from one server to another and also varies depending on whether you
chose to utilize LVM during installation. Instead of a long path beginning with /dev/mapper, you
may instead see the device name as /dev/sda1, /dev/xvda1, /dev/nvme0n1p1, or other variations.
The name of the device is generated by the type of hardware the underlying storage device is, such
as the /dev/nvme... naming convention used for NVME hard drives, /dev/sdaN for standard SATA
hard drives, and so on.

The actual type of device the underlying storage hardware is doesn’t matter so much; it only really
matters that you can identify which device is in the most danger of becoming full. In the example
screenshot, the root filesystem is using 35% of its available space. In this case, we aren’t in danger of
running out of space when it comes to that.

Chapter 8 157

If you do see that an important storage volume is either full or trending toward becoming full, then
you’ll know which one in particular you should focus on, and we’ll explore additional ways that you
can obtain more information about what’s using up space very shortly.

However, sometimes a storage volume can be considered full, even when it appears that the volume
has plenty of space free. This is due to the fact that on a Linux system, the actual data you’re storing
and the size of that data isn’t the only consideration. We also have to take inodes into account as well.

But, what exactly is an inode, and why would such a thing cause a disk to be reported as full when
it’s actually not? Think of the concept of an inode as a type of database object, containing metadata for
the actual items you’re storing. Information stored in inodes are details such as the owner of the file,
permissions, last modified date, and type (whether it is a directory or a file). While metadata is certainly
a good thing to have, the problem with inodes is that you can only have a limited number of them on
any storage device. If a storage device reaches its inode limit, then the volume is still considered full,
and will not be able to accept additional data.

In practice, the symptom of this scenario is that commands such as df will show the volume as having
free space, yet when you try to save a new file onto the device, you will see an error that you’re unable
to do so because the volume is full. If you weren’t aware of the existence of inodes, then this situation
might be a bit confusing.

While it may seem as though having another limit on storage in the form of inodes is a downside, in
reality, the inode limit on storage volumes is usually extremely high and very hard to reach. Often, if
an inode limit is reached, that usually means that there’s a bigger issue with the server that’s causing
it to hit this limit. For example, perhaps there’s an issue on the server where it’s saving a much higher
number of files than it should, such as an usual number of log files or queued e-mail message files.

Thankfully, determining whether or not you’re running out of inodes on a particular storage volume
is very simple – rather than using the -h option with the df command, use the -i option instead. The
-i option will display inode counts instead of standard size-based storage metrics. To help illustrate the
difference, I’ll show you some output from one of my servers to give you an idea of what this looks like:

df -i

The output of that command on my system is as follows:

Figure 8.2: Output from the df -i command

Monitoring System Resources158

In this example, the root filesystem on the example server has a total of 999424 inodes available, of
which 84223 are used and 915201 are free. In my case, I have plenty of inodes available. However, I
recommend committing the df -h and df -i commands to memory. Whether any space issues with
storage you may experience pertain to actual space or inode utilization, you’ll be able to know which
is the case between those two commands.

Assuming you have storage that’s on the verge of becoming full (or it already is), how do you pinpoint
exactly what in particular is using up all that space? There are additional tools you can use that will
help you narrow this down. And that’s exactly what we’ll explore next.

Diving deeper into disk usage
The next step in investigating what’s gobbling up your disk space is finding out which files in particular
are using it all up. At this stage, there is a multitude of tools you can use to investigate. The first I’ll
mention is the du command, which is able to show you how much space a directory is using. Using
du against directories and sub-directories will help you narrow down the problem. Like df, we can
also use the -h option with du to make our output easier to read. By default, du will scan the current
working directory your shell is attached to and give you a list of each item within the directory, the
total space each item consists of, as well as a summary at the end.

The du command is only able to scan directories that its calling user has permission to scan. If you
run this as a non-root user, then you may not be getting the full picture. Also, the more files and
sub-directories that are within your current working directory, the longer this command will take to
execute. If you have an idea where the resource hog might be, try to cd into a directory further in the
filesystem tree to narrow your search down and reduce the amount of time the command will take.
The output of du -h can often be more verbose than you actually need in order to pinpoint your culprit
and can fill several screens. To simplify it, my favorite variation of this command is the following:

du -hsc *

Basically, you would run du -hsc * within a directory that’s as close as possible to where you think the
problem is. The -h option, as we know, gives us human-readable output (essentially, giving us output
in the form of megabytes, gigabytes, and so on). The -s option gives us a summary and -c provides us
with the total amount of space used within our current working directory. The following screenshot
shows this output from one of my computers:

Chapter 8 159

Figure 8.3: Example output from du -hsc *

To make that example more interesting, I took the screenshot from my personal desktop, but the
resulting command and its syntax won’t differ from one device to the next. As you can see, the
information provided by du -hsc * is a nice, concise summary. From the output, we can clearly see
how much space each of the directories within our working directory takes currently. For example, I
have 2.2 GB used in my projects directory right now, as well as 53 GB worth of ISO images.

At this point, we know which directories at the top level of our current working directories are using
the most space. But we still need to narrow this down to what in particular within those directories
is responsible for using that space. To dive deeper, we could cd into any of those large directories
and run the du command again. After a few runs, we should be able to narrow down the largest files
within these directories and make a decision on what we want to do with them. Perhaps we can clean
unnecessary files or add another disk. Once we know what is using up our space, we can decide what
we’re going to do about it.

At this point in reading this book, you’re probably under the impression that I have some sort of strange
fixation on saving the best for last. You’d be right. I’d like to finish off this section by introducing you
to one of my favorite applications, the NCurses Disk Usage utility (or more simply, ncdu). The ncdu
command is one of those things that administrators who constantly find themselves dealing with disk
space issues learn to love and appreciate. In one go, this command gives you not only a summary of
what is eating up all your space but also gives you the ability to traverse the results without having to
run a command over and over while manually traversing your directory tree. You simply execute it
once and then you can navigate the results and drill down as far as you need.

Monitoring System Resources160

To use ncdu, you will need to install it as it doesn’t come with Ubuntu by default:

sudo apt install ncdu

Once installed, simply execute ncdu in your shell from any starting directory of your choosing. When
done, simply press q on your keyboard to quit. Like du, ncdu is only able to scan directories that the
calling user has access to. You may need to run it as root to get an accurate portrayal of your disk usage.

You may want to consider using the -x option with ncdu. This option will limit it to the current filesystem,
meaning it won’t scan network mounts or additional storage devices; it’ll just focus on the device you
started the scan on. This can save you from wasting time scanning areas that aren’t related to your issue.

When executed, ncdu will scan every directory from its starting point onward. When finished, it will
give you a menu-driven layout allowing you to browse through your results:

Figure 8.4: ncdu in action

Again, I took this screenshot from my desktop, from within my home directory. What ncdu does is
show you your disk usage from your current directory down, and it will order the results by placing
the items with the highest usage toward the top. To move around inside of ncdu, you do so by moving
your selection (indicated with a long white highlight) with the up and down arrows on your keyboard.

Chapter 8 161

If you press Enter on a directory, ncdu switches to showing you the summary of that directory, and you
can continue to drill down as far as you need. In fact, you can actually delete items and entire folders
by pressing d. Therefore, ncdu not only allows you to find what is using up your space but allows you
to take action as well!

Sometimes, it’s obvious what’s taking up space on a disk, and ncdu may not always be necessary.
Generally speaking, you’ll start out your investigation with df -h, to see which storage volume is the
one that’s running out of space. Then, you’ll go into that directory and run another command, such
as du -hsc *, to see which directory is using up the most space. If you don’t immediately know from
the output of du what the underlying issue is, then consider using a tool such as ncdu to dive down
even deeper.

Although monitoring storage is critical, we also need to keep an eye on free memory. Next up, we’ll
take a look at how to monitor the memory of our server.

Monitoring memory usage
I forget things all the time. I regularly forget where my car keys are, even though they’re almost always
right there in my pocket the entire time. I even forget to use sudo for commands that normally require
it, despite working with Linux for over 20 years. Thankfully, computers have a better memory than
I do, but if we don’t manage it effectively, the memory on our servers will be just as useless as I am
when I forget to put freshly washed laundry in the dryer.

Understanding how Linux manages memory can actually be a somewhat complex topic, as
understanding how much memory is truly free can be a hurdle for newcomers to overcome. You’ll soon
see that how Linux manages memory on your server is actually fairly straightforward once explained.

Understanding server memory
For the purpose of monitoring memory usage on our server, we have the free command at our disposal,
which we can use to see how much memory is being consumed at any given time. Giving the free
command with no options will result in the output being shown in terms of kilobytes:

Figure 8.5: Output of the free command

Monitoring System Resources162

My favorite variation of this command is free -m, which shows the amount of memory in use in terms
of megabytes. You can also use free g to show the output in terms of gigabytes, but the output won’t
be precise enough on most servers. In my opinion, adding the -m option makes the free command
much more readable:

Figure 8.6: Output of the free -m command

Since everything is broken down into megabytes, it’s much easier to read, at least for me.

At first glance, it may appear as though this server has only 277 MB free. You’ll see this in the first row
and third column under free. In actuality, the number you’ll really want to pay attention to is the
number under available, which is 2943 MB in this case. That’s now much memory is actually free.
Since this server has 3925 MB of total RAM available (you’ll see this on the first row, under total), this
means that most of the RAM is free, and this server is not really working that hard at all.

Some additional explanation is necessary to truly understand these numbers. You could very well stop
reading this section right now as long as you take away from it that the available column represents
how much memory is free for your applications to use. However, it’s not quite that simple.

Technically, when you look at my output, the server really does have only 277 MB of memory free. The
amount of memory listed under available is legitimately being used by the system in the form of a
cache but would be freed up in the event that any application needed to use it. If an application starts
and needs a decent chunk of memory in order to run, the kernel will provide it with some memory
from this cache.

Linux, like most modern systems, subscribes to the belief that “unused RAM is wasted RAM.” RAM
that isn’t being used by any process is given to what is known as a filesystem cache, which is utilized
to make your server run more efficiently. When data needs to be written to a storage device, it’s not
directly written right away. Instead, this data is written to the filesystem cache (a portion of RAM
that’s set aside) and then synchronized to the storage device later in the background. The reason
this makes your server more efficient is that this data being stored in RAM would be written to and
retrieved faster than it would be from disk. Applications and services can synchronize data to the disk
in the background without forcing you to wait for it. This cache also works for reading data, as when
you first open a file, its contents are cached. The system will then retrieve it from RAM if you read
the same file again, which is more efficient than loading it from the storage volume each time. If you
just recently saved a new file and retrieve it right away, it’s likely still in the cache and then retrieved
from there, rather than from the disk directly.

Chapter 8 163

To understand all of the columns shown in Figure 8.6, I’ll outline the meaning of each in the following
table:

Column Meaning

total The total amount of memory installed on the server.

used The memory that is used (from any source). This is calculated as follows: used = total -
free - buffers/cache.

free The memory not being used by anything, the cache or otherwise.

shared The memory used by tmpfs as well as other shared resources.

buff/cache The amount of memory being used by the buffers and cache.

available The memory that is free for applications to use.

You may have noticed in Figure 8.6 that memory usage is also listed for a resource called swap. Let’s take
a look at that as well. We will dedicate the next section entirely to it so that we ensure we understand
what it is, and what it does for us.

Managing swap
swap is one of those things we never want to use, but always want to make sure it is available. It’s
kind of like car insurance, no one is excited to buy it, but we do want to have it in case something bad
happens. There’s even some debate between administrators on whether or not swap is still relevant
today. It’s definitely relevant, regardless of what anyone says, as it’s a safety net of sorts. (And disk
space is cheaper nowadays, so dedicating some of our storage to this task isn’t really a big deal, so we
may as well.)

So what is it? swap is basically a partition or a file that acts as RAM in situations where your server’s
memory is saturated. If we manage a server properly, we hope to never need it, as swap is stored on
your hard disk, which is orders of magnitude slower than RAM. But if something goes wrong on your
server and your memory usage skyrockets, swap may save you from having your server go down.
The Out of Memory (OOM) Killer may also activate itself when memory is full, to kill a misbehaving
process that’s using the majority of your memory, but as much as possible, we don’t want to rely on
that and instead ensure adequate swap in case memory is exhausted.

The way swap is implemented by default in Ubuntu is in the form of a swap file. In previous versions of
Ubuntu (specifically, 16.04 and earlier) it was implemented via a swap partition instead. In fact, if you
have an existing server that you’ve upgraded to Ubuntu 22.04 and it started on an older Ubuntu version,
you may still have a swap partition, even though you’re running the latest release. New installations
of Ubuntu performed after 16.04 will have a swap file.

Is having a swap file better than a swap partition? I would say yes, it’s preferred – although you won’t
notice any difference when it comes to performance. Whether swap on your server is in the form of a
swap file or partition, it doesn’t change the fact that swap uses your disk and is slower than RAM. One
benefit of a swap file compared to a swap partition is that it’s easier to grow or shrink a swap file than
it is to do the same with a swap partition.

Monitoring System Resources164

Anyway, considering that swap files are the preferred method (and the new default) going forward, I
won’t cover the process of creating swap as a partition, as there’s no reason to do so anymore.

The swap file for your server is declared in the /etc/fstab file (we’ll discuss the /etc/fstab file
in more detail in Chapter 9, Managing Storage Volumes). In most cases, you would’ve had a swap file
created for you during installation. You could, of course, add a swap file later if for some reason you
don’t have one. In the case of some cloud instance providers, you may not get a swap file by default.
In that situation, you would create a swap file yourself (we’ll discuss the process later in this section)
and then use the swapon command to activate it:

sudo swapon -a

When run, the swapon -a command will find your swap file in /etc/fstab (if one is listed there), mount
it, and activate it for use. The inverse of this command is swapoff -a, which deactivates your swap file.
It’s rare that you’d need to disable swap, unless, of course, you were planning on deleting your swap
file in order to create a larger one. If you find out that your server has inadequate swap, that may be
a course of action you would take.

While having swap is generally a good idea, there are actually some applications that prefer that
the server doesn’t have it at all. Not having swap isn’t a common requirement, but Kubernetes is a
good example of a situation that might lead you to disabling swap altogether. In fact, the installation
process for Kubernetes will complain (or possibly fail) if you do have swap enabled. In the case of a
Kubernetes cluster, the individual servers within such a cluster would be a special case anyway, each
dedicated to the task of running containers (which is what Kubernetes does; more on that in Chapter
18, Container Orchestration).

When you check your free memory (hint: execute free -m), you’ll see swap listed whether you have
it or not, but when swap is deactivated, you will see all zeros for the size totals.

So, how do you actually create a swap file if you wish to use it and you don’t already have one? To do
so, you’ll first create the actual file to be used as swap. This can be stored anywhere, but /swapfile is
typically ideal. You can use the fallocate command to create the actual file. The fallocate command
will force a file to be a particular size:

sudo fallocate -l 4G /swapfile

Here, I’m creating a 4 GB swap file, but feel free to make yours whatever size you want in order to fit
your needs. Next, we need to prepare this file to be used as swap. First, we’ll need to fix the permissions
as we need this file to be a bit more restrictive than most:

sudo chmod 0600 /swapfile

Then, we can use the mkswap command to convert this file into an actual swap file:

sudo mkswap /swapfile

Now, we have a handy-dandy swap file stored on our root filesystem. Next, we’ll need to mount it. As
always, it’s recommended that we add this to our /etc/fstab file. What follows is an example entry:

Chapter 8 165

/swapfile none swap sw 0 0

From this point, we can activate our new swap file with the swapon command that I mentioned earlier:

sudo swapon -a

After running that command, the swap file should be active and in use. You can verify this by running
free -m and seeing a swap file listed, with a size greater than 0. While I certainly hope you won’t need
to resort to using swap, I know from experience that it’s only a matter of time. Knowing how to add
and activate swap when you need it is definitely a good practice, but for the most part, you should be
fine because, by default on most platforms, you’ll have swap created for you when setting up Ubuntu
for the first time during installation. If you do need to create it manually for whatever reason, I always
recommend a bare minimum of 2 GB on servers, or higher if that better fits your use-case.

How much swap is being used is something you should definitely keep an eye on. When the memory
starts to get full, the server will start to utilize the swap file. It’s normal for a small portion of swap to
be utilized even when the majority of the RAM is free. But if a decent chunk of swap is being used, it
should be investigated (perhaps a process is using a larger than normal amount of memory).

You can actually control at which point your server will begin to utilize swap. How frequently a Linux
server utilizes swap is referred to as its swappiness. By default, the swappiness value on a Linux server
is typically set to 60. You can verify this with the following command:

cat /proc/sys/vm/swappiness

The higher the swappiness value, the more likely your server will utilize swap. If the swappiness value
is set to 100, your server will use swap more often. If you set it to 0, swap will be used a lot less often.
This value correlates roughly to the percentage of RAM being used.

To change this value on the fly, you can execute the following command:

sudo sysctl vm.swappiness=30

Once you execute that command, the change in the swappiness value will take effect immediately.
However, once you reboot your server, the value will reset. In order to make the change persist, open
the following file with your text editor of choice:

/etc/sysctl.conf

A line in that file corresponding to swappiness will typically not be included by default, but you can
add it manually. To do so, add a line such as the following to the end of the file and save it:

vm.swappiness = 30

Changing this value is one of many techniques within the realm of performance tuning. While
the default value of 60 is probably fine for most, there may be a situation where you’re running a
performance-minded application and can’t afford to have it swap any more than it absolutely has to.
In such a situation, you would try different values for swappiness and use whichever one works best
during your performance tests.

Monitoring System Resources166

In the next section, we’ll take a look at another important metric to keep an eye on: load average. The
load average gives us an idea of how busy the CPU(s) might be, so we can better understand how to
tell when our server is overwhelmed and we may need to take action.

Understanding load average
Another very important topic to understand when monitoring performance is load average, which
is a series of numbers that represents your server’s trend in CPU utilization over a given time. You’ve
probably already seen these series of numbers before, as there are several places in which the load
average appears. If you run the htop utility, for example, the load average is shown on the screen.
In addition, if you execute the uptime command, you can see the load average in the output of that
command as well. You can also view your load average by viewing the text file that stores it in the
first place:

cat /proc/loadavg

Personally, I habitually use the uptime command in order to view the load average. The primary
purpose of the uptime command is to display the amount of time that the server has been in use, and
this time resets anytime you power off or reboot the server. But in addition to how long the server
has been powered on, the uptime command displays the current load average of your server as well.

Understanding load average might be a bit confusing at first, but you’ll quickly realize it’s not as
complicated as it seems. The load average is a set of three numbers, each corresponding to a portion of
time. From left to right, these numbers correspond to 1 minute, 5 minutes, and 15 minutes respectively.
A typical load average may look something like the following:

0.36, 0.29, 0.31

In this example, we have a load average of 0.36 in the 1-minute section, 0.29 in the 5-minute section,
and 0.31 in the 15-minute section. In particular, each number represents how many tasks were waiting
for attention from the CPU for that given time period. Therefore, these numbers are really good. The
server isn’t that busy, since virtually no task is waiting for the CPU at any one moment (each number
is less than 1). This is contrary to something such as overall CPU percentages, which you may have
seen in task managers on other platforms or even within such Linux tools as htop. While viewing
your CPU usage percentage can be useful, the problem with this is that your CPUs will constantly go
back and forth from a high percentage of usage to a low percentage of usage, which you can see for
yourself by just running htop for a while. When a task does some sort of processing, you might see
your cores shoot up to 100 percent and then right back down to a lower number. That really doesn’t
tell you much, though. With load averages, you’re seeing the trend of usage over three given time
frames, which is more accurate in determining whether your server’s CPUs are running efficiently or
are choking on a workload it just can’t handle.

The main question, though, is at which point you should start to worry, which really depends on what
kind of CPUs are installed on your server. Your server will have one or more CPUs, each with one or
more cores. To Linux, each of these cores, whether they are physical or virtual, is the same thing (a
CPU). In my case, the machine I took the earlier output from has a CPU with four cores.

Chapter 8 167

The more CPUs your server has, the more tasks it’s able to handle at any given time, which also means
it can handle a higher load average.

When a load average for a particular time period is equal to the number of CPUs on the system, that
means your server is at 100% capacity. It’s handling a consistent number of tasks that are equal to
the number of tasks it can handle. For example, if you have an 8-core CPU and the load average is 8
for a given time frame, then the CPU is 100% at its available capacity for that time frame. If your load
average is consistently more than the number of cores you have available, that’s when you’d probably
want to look into the situation. It’s fine for your server to be at capacity every now and then, but if it
always is, that’s a cause for alarm.

I’d hate to use a cliché example in order to fully illustrate this concept, but I can’t resist, so here goes.
A load average on a Linux server is equivalent to the check-out area at a supermarket. A supermarket
will have several registers open, where customers can pay to finalize their purchases and move along.
In my experience at typical stores in my area, you would have something like 20 check-out registers
but only two cashiers working at any one time, but for this example, we’ll assume each register has
a cashier operating it.

Each cashier is only able to handle one customer at a time. If there are more customers waiting to
check out than there are cashiers, the lines will start to back up and customers will get frustrated. In a
situation where there are four cashiers and a total of four customers at a particular time, the cashiers
would be at capacity, which is not really a big deal since no one else is waiting. What can add to this
problem is a customer that is paying by check and/or using a few dozen coupons, which makes the
checkout process much longer (similar to a resource-intensive process). If there were four cashiers
and six customers waiting, then there would be two more customers than the store is able to handle at
the same time. In that case, the checkout area of the store would be above capacity. This is essentially
how load average works. Each cashier is a CPU, and each customer is a process that needs CPU time.

Just like the cashiers, each CPU can only handle one task at a time, with some tasks hogging the CPU
longer than others. If there are exactly as many tasks as there are CPUs, there’s no cause for concern.
But if the lines start to back up, we may want to investigate what is taking so long. To gain control of
the situation, we may hire an additional cashier (add a new CPU) or ask a disgruntled customer to
leave (kill a process).

Let’s take a look at another example load average:

1.87, 1.53, 1.22

In this situation, we shouldn’t be concerned, because our hypothetical server has 4 CPUs, and none
of them have been at capacity within the 1-, 5-, or 15-minute time periods. Even though the load is
consistently higher than 1, we have CPU resources to spare, so it’s no big deal. If we had one of those
awesome new Threadripper CPUs from AMD (which can contain an impressive number of cores) then
those numbers would represent extremely low load. Going back to our supermarket comparison, the
load average in the previous example would be equivalent to having four cashiers with an average of
almost two customers being assisted during any 1 minute. If this server only had one CPU, we would
probably want to figure out what’s causing the line to begin to back up.

Monitoring System Resources168

While you might logically assume that having a low load average is a good thing, it can actually
represent a really big problem depending on the context. When we deploy servers, we do so to get
some sort of work done.

Whether that “work” is to host an application or run jobs to process data, our servers need to be doing
some sort of work, otherwise, we’re wasting money by having them. If the load average of your server
drops to an abnormally low value, that might mean that a service that would normally be running all
the time has failed and exited. For example, if you have a database server that constantly has a load
within the 1.x range that suddenly drops to 0.x, that might mean that you either have legitimately
less traffic or the database server service is no longer running. This is why it’s always a good idea to
develop baselines for your server, in order to gauge what is normal and what isn’t. A baseline refers
to resource usage, most of the time. If the resource usage is drastically higher or even lower than the
baseline, that’s a potential cause for concern either way.

Overall, load averages are something you’ll become very familiar with as a Linux administrator if
you haven’t already. As a snapshot in time of how heavily utilized your server is, it will help you to
understand when your server is running efficiently and when it’s having trouble. If a server is having
trouble keeping up with the workload you’ve given it, it may be time to consider increasing the number
of cores (if you can) or scaling out the workload to additional servers. When troubleshooting utilization,
planning for upgrades, or designing a cluster, the process always starts with understanding your
server’s load average so you can plan your infrastructure to run efficiently for its designated purpose.

Now that we’ve gone over the important resources that we need to monitor to ensure our server
remains healthy, let’s take a look at a useful utility we can utilize that will make resource usage even
easier to understand.

Viewing resource usage with htop
When wanting to view the overall performance of your server, nothing beats htop. Although not
typically installed by default, htop is one of those utilities that I recommend everyone installs as soon
as possible, since it’s indispensable when wanting to check on the resource utilization of your server.
It’s so useful in fact that I’ve mentioned it several times earlier in this chapter, even before we started
an actual discussion about it in this section. It’s a great utility.

If you don’t already have htop installed, all you need to do is install it with apt:

sudo apt install htop

When you run htop at your shell prompt, you will see the htop application in all its glory. In some
cases, it may be beneficial to run htop as root, since doing so does give you additional options such
as being able to kill processes, though this is not required:

Chapter 8 169

Figure 8.7: Running htop

At the top of the htop display, you’ll see a progress meter for each of your cores (the server used for my
screenshot only has one core), as well as a meter for memory as well as swap. In addition, the upper
portion will also show your Uptime, Load average, and the number of Tasks you have running. The
lower section of htop's display will show you a list of processes running on your server, with fields
showing you useful information such as how much memory or CPU is being consumed by each process,
as well as the command being run, the user running it, and its Process ID (PID). We discussed PIDs
in Chapter 7, Controlling and Managing Processes. To scroll through the list of processes, you can press
Page Up or Page Down or use your arrow keys. In addition, htop features mouse support, so you are also
able to click on columns at the top in order to sort the list of processes by that criteria. For example,
if you click on MEM% or CPU%, the process list will be sorted by memory or CPU usage respectively. The
contents of the display will be updated every 2 seconds.

The htop utility is also customizable. If you prefer a different color scheme, for example, you can press
F2 to enter Setup mode, navigate to Colors on the left, and then you can switch your color scheme
to one of the six that are provided. Other options include the ability to add additional meters, add or
remove columns, and more. One tweak I find especially helpful on multicore servers is the ability to
add an average CPU bar. Normally, htop shows you a meter for each core on your server, but if you
have more than one, you may be interested in the average as well. To do so, enter Setup mode again
(F2), then with Meters highlighted, arrow to the right to highlight CPU average, and then press F5 to
add it to the left column. There are other meters you can add as well, such as Load average, Battery,
and more.

Monitoring System Resources170

Depending on your environment, function keys may not work correctly in terminal programs such as
htop, because those keys may be mapped to something else. For example, F10 is used to exit htop, but
that may not work if F10 is mapped to a function within your terminal emulator, and using a virtual
machine solution such as VirtualBox may also prevent some of these keys from working normally.
You can also navigate htop with your mouse, even via an SSH connection. This also means that you
can click on the word Quit in the lower right-hand corner to exit the application.

Here’s an example of htop configured with a meter for the CPU average:

Figure 8.8: htop with a meter for CPU average added

When you open htop, you will see a list of processes for every user on the system. When you have
a situation where you don’t already know which user/process is causing extreme load, this is ideal.
However, a very useful trick (if you want to watch a specific user) is to press u on your keyboard,
which will open up the Show processes of: menu. In this menu, you can highlight a specific user by
highlighting it with the up or down arrow keys and then pressing Enter to only show processes for
that user. This will greatly narrow down the list of processes.

Another useful view is the tree view, which allows you to see a list of processes organized by their parent/
child relationship, rather than just a flat list. In practice, it’s common for a process to be spawned by
another process. In fact, all processes in Linux are spawned from at least one other process, and this
view shows that relationship directly. In a situation where you are stopping a process only to have it
immediately re-spawn, you would need to know what the parent of that process is in order to stop
it from resurrecting itself. Pressing F5 will switch htop to tree view mode, and pressing it again will
disable the tree view.

Chapter 8 171

With the tree view activated, htop will appear similar to the following:

Figure 8.9: htop with tree view activated

As I’ve mentioned, htop updates its stats every 2 seconds by default. Personally, I find this to be
acceptable, but if you want to change how fast it refreshes, you can call htop with the -d option and
then apply a different number of seconds (entered in tenths of seconds) for it to refresh. For example,
to run htop but have it update every 7 seconds, start htop with the following command:

htop -d 70

To kill a process with htop, use your up and down arrow keys to highlight the process you wish to kill
and press F9. A new menu will appear, giving you a list of signals you are able to send to the process
with htop. SIGTERM, as we discussed before, will attempt to gracefully terminate the process. SIGKILL
will terminate it uncleanly. Once you highlight the signal you wish to send, you can send it by pressing
Enter or cancel the process with Esc.

As you can see, htop can be incredibly useful and has (for the most part) replaced the legacy top
command that was popular in the past for most administrators. The top command is available by
default in Ubuntu Server and is worth a look, if only as a comparison to htop. Like htop, the top
command gives you a list of processes running on your server, as well as their resource usage. There
are no pretty meters and there is less customization possible, but the top command serves the same
purpose. In most cases, though, htop is probably your best bet going forward.

Monitoring System Resources172

Summary
In this chapter, we learned how to monitor our server’s resource usage. We began with a look at the
commands we can use to investigate disk usage, and we learned how to monitor memory usage as well.
We also discussed swap, including what it is, why you’d want to have it, as well as how to create a swap
file manually should the need to do so come up. We then took a look at load average and closed out
the chapter by checking out htop, which is my favorite utility for getting an overall look at resource
usage on servers.

In Chapter 9, Managing Storage Volumes, we’ll take a closer look at storage. In this chapter, we learned
how to see how much is being used, but in the next, we’ll look at more advanced concepts surrounding
storage, such as formatting volumes, adding additional volumes, and even LVM. See you there!

Relevant videos
•	 Linux Crash Course – The du Command (LearnLinuxTV): https://linux.video/du
•	 Linux Crash Course – htop (LearnLinuxTV): https://linux.video/htop
•	 Linux Crash Course – Load Average (LearnLinuxTV): https://linux.video/loadavg
•	 Linux Crash Course – Understanding Memory Usage (LearnLinuxTV):

https://linux.video/mem

•	 Awesome Linux Tools - ncdu (LearnLinuxTV): https://linux.video/ncdu

Further reading
•	 Linux ate my RAM: https://learnlinux.link/ate-ram

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/du
https://linux.video/htop
https://linux.video/loadavg
https://linux.video/mem
https://linux.video/ncdu
https://learnlinux.link/ate-ram
https://packt.link/LWaZ0

9
Managing Storage Volumes

When it comes to storage on our servers, it seems as though we can never get enough. While hard disks
are growing in capacity every year, and high-capacity disks are cheaper than ever, our servers gobble up
available space quickly. As administrators of servers, we always do our best to order servers with ample
storage, but business needs evolve over time, and no matter how well we plan, a successful business will
always need more. While managing your servers, you’ll likely find yourself adding additional storage
at some point. But managing storage is more than just adding new disks every time your current one
gets full. Planning ahead is also important, and technologies such as Logical Volume Manager (LVM)
will make your job much easier as long as you start using it as early as you possibly can.

LVM itself is just one of the concepts we’ll go over in this chapter that will give you more flexibility with
how you handle servers. I’ll also walk you through additional concepts that will no doubt come in handy
as you manage storage and volumes on your server. More specifically, this discussion will include:

•	 Adding additional storage volumes to the filesystem
•	 Formatting and partitioning storage devices
•	 Mounting and unmounting volumes
•	 Understanding the /etc/fstab file
•	 Backing up and restoring volumes
•	 Utilizing LVM

One possible solution when your server is running out of disk space is to add an additional storage
volume. So the first order of business for us, in this chapter, will be to look into how we can do exactly
that.

Adding additional storage volumes
At some point or another, you’ll reach a situation where you’ll need to add additional storage to your
server. On physical servers, we can add additional hard disks, and on virtual or cloud servers, we can
add additional virtual disks. Either way, in order to take advantage of the extra storage, we’ll need to
determine the name of the device, format it, and mount it.

Managing Storage Volumes174

In the case of LVM (which we’ll discuss later in this chapter), we’ll have the opportunity to expand an
existing volume, often without a server reboot being necessary. There’s an overall process to follow
when adding a new device, though. When adding additional storage to your system, you should ask
yourself the following questions:

How much storage do you need? If you’re adding a virtual disk, you can usually make it any size you
want, as long as you have enough space remaining in the pool of your hypervisor.

After you attached it, what device name did it receive? When a new disk is attached to our server, it
will be detected by the system and given a device name. In most cases, the naming convention of /
dev/sda, /dev/sdb, and so on will be used. In other cases (such as virtual disks), this will be different,
such as /dev/vda, /dev/xda, and possibly others. The naming scheme usually ends with a letter,
incrementing to the next letter with each additional disk.

How do you want the storage device formatted? At the time of writing, the ext4 filesystem is the most
common. However, for different workloads, you may consider other options (such as XFS). When in
doubt, use ext4, but definitely read up on the other options to see if they may benefit your use case.
ZFS is another option that you can consider, though compared to the other choices, it’s relatively new.
We’ll discuss formatting in the next section, Formatting and partitioning storage devices.

It may be common knowledge to you by now, but the word filesystem is a term that can have
multiple meanings on a Linux system depending on its context and may confuse newcomers. Linux
administrators like us will most often use the term filesystem to discuss the file and directory structure
of a typical Linux system. However, the term is also used to describe how a disk is formatted for use
with the distribution (for example, the ext4 filesystem). In this chapter, we’ll be primarily focusing
on the latter.

Where do you want it mounted? The new disk needs to be accessible to the system and possibly users,
so you would want to mount (attach) it to a directory on your filesystem where your users or your
application will be able to use it. In the case of LVM, which we also discuss in this chapter, you’re
probably going to want to attach it to an existing storage group. You can come up with your own
directory for use with the new volume, but I’ll discuss a few common locations later on in this chapter.
We’ll go over the process of mounting and unmounting in the Mounting and unmounting volumes section.

Let’s consider the answers to the first two questions. With regard to how much space you should add,
you would want to research the needs of your application or organization and find a reasonable amount.
In the case of physical disks, you don’t really get a choice beyond deciding which disk to purchase. In
the case of virtual disks, you’re able to be more frugal, as you can add a small disk to meet your needs
(you can always add more later).

The main benefit of LVM with virtual disks is being able to grow a filesystem without a server reboot.
For example, you can start with a 30 GB volume and then expand it in increments of 10 GB by adding
additional 10 GB virtual disks. This method is certainly better than adding a 200 GB volume all at once
when you’re not completely sure all that space will ever be used.

Chapter 9 175

LVM can also be used on physical servers as well, but would most likely require a reboot anyway since
you’d have to open the case and physically attach a hard drive. Some servers allow for hot-plugging,
which gives you the ability to add/remove physical hard drives without powering off the server first,
which is a great benefit to have.

Next, the device name can be found with the fdisk -l command. The fdisk command is normally
used for creating and deleting partitions, but it will also allow us to determine which device name
our new disk received. Using the fdisk -l command will give you the info, but you’ll need to run it
as root or with sudo:

sudo fdisk -l

Executing this command produces output similar to the following:

Figure 9.1: Output of the fdisk -l command

I always recommend running fdisk -l before and after attaching a new device. That way, it will be
more obvious which device name represents the new device.

Another trick is to use the following command, with which the output will update automatically as
you add the disk:

dmesg --follow

Just start the command, attach the disk, and watch the output. When done, press Ctrl + c on your
keyboard to return to the prompt.

Managing Storage Volumes176

You can also find the device name of your new disk with the lsblk command. The benefit of lsblk is
that you don’t need root privileges, and the information it returns is simplified:

Figure 9.2: Output of the lsblk command

On a typical server, the first disk (basically, the one that you installed Ubuntu Server on) will be given
a device name of /dev/sda while additional disks will be given the next available name, such as /
dev/sdb, /dev/sdc, and so on (depending on the type of hard disk you have). Nowadays, Non-Volatile
Memory Express (NVMe) hard drives are becoming increasingly common, so you may see a device
name similar to /dev/nvme0n1. You’ll also need to know the partition number. Device names for disks
will also have numbers at the end, representing individual partitions. For example, the first partition
of /dev/sda will be given /dev/sda1, while the second partition of /dev/sdc will be given /dev/sdc2.
These numbers increment and are often easy to predict. As I mentioned before, your device naming
convention may vary from server to server, especially if you’re using a Redundant Array of Independent
Disks (RAID) controller or a virtualization host such as VMware or XenServer. If you haven’t created
a partition on your new disk yet, you will not see any partition numbers at the end of their names.

Now that you’ve added and named an additional storage volume, we can proceed through the process
of setting it up. We need to decide where we’re going to mount it, and what purpose it will serve. But
before we can even mount the storage device in the first place, we need to create at least one partition
on it and then format it. We’ll take care of both in the next section.

Formatting and partitioning storage devices
Once you’ve installed a physical or virtual disk, you’re well on your way to benefiting from additional
storage. But in order to utilize a disk, it must first be formatted. In order to ensure we’re formatting the
correct disk, we need to find the name the device was given. As you already know from the previous
section, there’s a specific naming scheme that is used in Linux distributions to name disks. So you
should already know the device name of the new disk. As explained earlier, you can use the sudo fdisk
-l command to see details regarding the storage devices attached to your server:

sudo fdisk –l

Chapter 9 177

This will produce an output that looks similar to the following:

Figure 9.3: Using fdisk -l to view a list of storage devices on the server

In my case, the device /dev/sdb is brand-new—I just added it to the server. Since I’m using a virtual
machine for the examples in this chapter, the new disk shows a model of QEMU HARDDISK. It doesn’t
have any partitions currently; notice how we see a few lines above it referring to a different hard disk
and partitions, such as /dev/sda3. We don’t have any lines like that in the description underneath
for /dev/sdb. If we did have one or more partitions on that device, they would show up in the output.

At this point, we know which storage device is new—there’s no doubt that in the preceding example, it’s
/dev/sdb. We always need to make sure we don’t attempt to format or repartition the wrong device, or
we may lose data. In this case, we can see /dev/sdb has no partitions (and this volume wasn’t present
before I added it), so it’s obvious which disk we’ll want to work with. Now we can create one or more
partitions on it, to continue preparing it for use.

Creating a partition
To create an actual partition on this device, we’ll use the fdisk command with sudo, using the device’s
name as an option. In my case, I would execute the following to work with disk /dev/sdb:

sudo fdisk /dev/sdb

Managing Storage Volumes178

Note that I didn’t include a partition number here, as fdisk works with the disk directly (and we
also have yet to create any partitions). In this section, I’m assuming you have a disk that has yet
to be partitioned or one you won’t mind wiping. When executed correctly, fdisk will show you an
introductory message and give you a prompt:

Figure 9.4: Main prompt of fdisk

At this point, you can press m on your keyboard for a menu of possible commands you can execute.
In this example, I’ll walk you through the commands required to set up a new disk for the first time.

I’m sure it goes without saying, but be aware of the destructive possibilities of fdisk. If you run
fdisk against the wrong drive, irrecoverable data loss may result. It’s common for an administrator
to memorize utilities such as fdisk to the point where using it becomes muscle memory. But always
take the time to ensure that you’re running such commands against the appropriate disk.

Before we continue with creating a new partition, some discussion is required with regard to the
Master Boot Record (MBR) and GUID Partition Table (GPT) partition tables. When creating a partition
table on a new disk, you’ll have the option to set it up to use an MBR or GPT partition table. GPT is the
newer standard, while MBR has been around for quite some time and is probably what you’ve been
using if you’ve been working with servers for a long time.

You may see MBR referred to as DOS when referring to the older partition structure. As you may already
know, DOS is short for Disk Operating System, but we’re not referencing that operating system here
in this chapter; we’re referencing the partitioning structure that IBM came up with decades ago. For
example, while using fdisk, it will refer to the MBR partition structure as DOS. In this chapter, we’ll
use MBR to refer to the older style whenever possible to avoid confusion.

Chapter 9 179

With MBR partition tables, you have some limitations to consider. First, MBR only allows you to create
up to four primary partitions. In addition, it also limits you to using somewhere around 2 TB of a disk.
If the capacity of your disk is 2 TB or less, this won’t be an issue. However, disks larger than 2 TB are
becoming more and more common.

On the other hand, GPT doesn’t have a 2 TB restriction, so if you have a very large disk, the decision
between MBR and GPT has pretty much been made for you. In addition, GPT doesn’t have a restriction
of up to four primary partitions, as fdisk with a GPT partition table will allow you to create up to 128
of them. It’s certainly no wonder GPT is fast becoming the new standard! It’s only a matter of time
before GPT becomes the default, so unless you have a good reason not to, I recommend using it if
you have a choice.

When you first enter the fdisk prompt, you can press o to create an MBR-style partition layout, or
you can press g to create the partition layout with the newer GPT style. As I’ve mentioned before, this
is a potentially destructive process, so make sure you’re using this utility against the correct drive!
Make sure you press the associated key for your chosen partition style and then press Enter, and then
we can proceed. Once you press g or o, you should see a confirmation that you have created a new
partition table.

Continuing on, after you’ve made your choice and created either an MBR or GPT partition table, we’re
ready to proceed. Next, at the fdisk prompt, type n to tell fdisk that you would like to create a new
partition. Then, you’ll be asked if you would like to create a primary or extended partition (if you’ve
opted for MBR). With MBR, you would want to choose primary for the first partition, and then you
can use extended for creating additional partitions. If you’ve opted for GPT, this prompt won’t appear,
as it will create your partition as primary no matter what.

The next prompt that will come up will ask you for the partition number, defaulting to the next available
number. Press Enter to accept the default. Afterward, you’ll be asked for the first sector of the partition
to use (press Enter to accept the default of 2,048), and then the next prompt will ask you for the last
sector to use. If you press Enter to accept the default last sector, your partition will consist of all the
free space that was remaining on the device. If you’d like to create multiple partitions, don’t accept
the default at the last sector prompt. Instead, you can clarify the size of your new partition by typing
the + symbol followed by the number of mebibytes or gibibytes to use, and then M for mebibytes or G
for gibibytes. For example, you can enter +20G here to create a partition of 20 GiB. Note that there is
no space after the + symbol, nor is there a space between 20 and G.

Managing Storage Volumes180

At this point, you’ll be returned to the fdisk prompt. To save your changes and exit fdisk, press w
and then Enter. Now if you run the fdisk -l command as root, you should see the new partition you
created. Here is some example output from the fdisk command from one of my servers, to give you
an idea of what the entire process looks like:

Figure 9.5: Example run of the fdisk command

If you’ve made a mistake or you want to redo your partition layout, you can do so by entering the fdisk
prompt again and then pressing g to create a new GPT layout or o to create a new MBR layout. Then,
continue through the steps again to partition your disk. Feel free to practice this a few times until you
get the hang of the process.

Formatting partitions
After you create your partition layout for your new disk and you’re satisfied with it, you’re ready to
format it. Now that I’ve created a partition layout on the new disk, the output of sudo fdisk -l will
be different:

Chapter 9 181

Figure 9.6: Another example of sudo fdisk -l after creating a partition

Notice that now, we have the partition /dev/sdb1 added, which is visible in the output. Now, we can
go ahead and format it. To do so, we take care of that with the mkfs command. This command is run
with a specific syntax that entails typing mkfs along with a period (.), followed by the type of filesystem
you would like to format the target as. The following example will format /dev/sdb1 as ext4:

sudo mkfs.ext4 /dev/sdb1

Your output will look similar to mine in the following screenshot:

Figure 9.7: Formatting a volume using the ext4 filesystem

If you’ve opted for a filesystem type other than ext4, you can use that in place of ext4 when using mkfs.
The following example creates an XFS filesystem instead:

sudo mkfs.xfs /dev/sdb1

Managing Storage Volumes182

Some filesystems, such as XFS, are not supported by default and may need an additional package
installed in order for them to be used. In the case of XFS, it requires the xfsprogs package to be installed.

So, now that we’ve created one or more partitions and formatted them, we’re ready to mount the
newly created partition(s) on our server. In the next section, I’ll walk you through mounting and
unmounting storage volumes.

Mounting and unmounting volumes
Now that you’ve added a new storage volume to your server and formatted it, you can mount the new
device so that you can start using it. To do this, we use the mount command. This command allows
you to attach a storage device (or even a network share) to a local directory on your server. Before
mounting, the directory must be empty. The mount command, which we’ll get to practice with an
example very shortly, basically just requires you to designate a place (directory) for the device to be
mounted to. But where should you mount the volume?

Normally, there are two directories, created by default, in your Ubuntu Server installation that exist
for the purposes of mounting volumes: /mnt and /media. While there is no hard rule as far as where
media needs to be mounted, these two directories exist as part of the Filesystem Hierarchy Standard
(FHS) that was mentioned in Chapter 4, Navigating and Essential Commands. The purposes of the /mnt
and /media directories are defined within this specification. The FHS defines /mnt as a mount point
for a temporarily mounted filesystem, and /media as a mount point for removable media.

In plain English, this means that the intended purpose of /mnt is for storage volumes you generally keep
mounted most of the time, such as additional hard drives, virtual hard disks, and network-attached
storage. The FHS document uses the term temporary when describing /mnt, but in practice, this is
typically where things are mounted that you generally expect to be around for a while. In regard to /
media, the FHS is basically indicating that removable media (flash drives, CD-ROM media, external
hard drives, and so on) are intended to be mounted there.

However, it’s important to point out that where the FHS indicates you should mount your extra volumes
is only a suggestion. (Perhaps a strong suggestion, but a suggestion nonetheless.) No one is going
to force you to follow it, and the fate of the world isn’t dependent on your choice. With the mount
command, you can literally mount your extra storage anywhere that isn’t already mounted or full of
files. You could even create the directory /kittens and mount your disks there and you won’t suffer
any consequences other than a few chuckles from your colleagues.

Often, organizations will come up with their own scheme for where to mount extra disks. Although I
personally follow the FHS designation, one example of a custom layout was with a company I worked
with in the past. They used the /store directory for mounting storage on their servers, a directory
they created themselves on each server. Whatever scheme you use is up to you; the only suggestion
I can make is to be as consistent as you can from one server to another, if only for the sake of sanity.

The mount command generally needs to be run as root. While there is a way around that (you can
allow normal users to mount volumes, but we won’t get into that just yet), it’s usually the case that
only root can or should be mounting volumes. As I mentioned, you’ll need a place to mount these
volumes, so to facilitate that, we can create a directory called /mnt/vol1 with the following command:

Chapter 9 183

sudo mkdir /mnt/vol1

When you’ve created a directory, like I have, or decided on an existing one, you can mount a volume
with a command similar to the following:

sudo mount /dev/sdb1 /mnt/vol1

In that example, I’m mounting device /dev/sdb1 to directory /mnt/vol1.

Of course, you’ll need to adjust the command to reference the device you want to mount and where
you want to mount it. As a reminder, if you don’t remember which devices exist on your server, you
can list them with fdisk –l.

Normally, the mount command wants you to issue the -t option with a given type. In my case, the mount
command would’ve been the following had I used the -t option, considering my disk is formatted
with ext4:

sudo mount /dev/sdb1 -t ext4 /mnt/vol1

A useful trick when mounting devices is to execute the df –h command before and after mounting.

While that command is generally used to check how much free space you have on various mounts, it
does show you a list of mounted devices, so you can simply compare the results after mounting the
device to confirm that it is present.

In that example, I used the -t option along with the type of filesystem I formatted the device with. In
the first example, I didn’t. This is because, in most cases, the mount command is able to determine
which type of filesystem the device uses and adjust itself accordingly. Thus, most of the time, you won’t
need the -t option. In the past, you almost always needed it, but it’s easier nowadays. The reason I
bring this up is that if you ever see an error when trying to mount a filesystem that indicates an invalid
filesystem type, you may have to specify this. Feel free to check the man pages for the mount command
for more information regarding the different types of options you can use.

When you are finished using a volume, you can unmount it with the umount command (the missing n
in the word unmount is intentional):

sudo umount /mnt/vol1

The umount command, which also needs to be run as root or with sudo, allows you to disconnect a
storage device from your filesystem. In order for this command to be successful, the volume should
not be in use. If it is, you may receive a device- or resource-busy error message. If you execute df
-h after unmounting, you should see that the filesystem is missing from the output and, thus, isn’t
mounted anymore.

The downside to manually mounting devices is that they will not automatically remount themselves
the next time your server boots. In order to ensure the mount is available anytime your server boots
up, you’ll need to edit the /etc/fstab file, which I’ll walk you through in the next section.

Managing Storage Volumes184

Understanding the /etc/fstab file
The /etc/fstab file is a very critical file on your Linux system. You can edit this file to call out additional
volumes you would like to automatically mount at boot time. However, the main purpose of this file
is to also mount your main filesystem, so if you make a mistake while editing it, your server will not
boot (at all). Definitely be careful here.

Analyzing the contents of /etc/fstab
When your system boots, it looks at the /etc/fstab file to determine where the root filesystem is. In
addition, the location of your swap area is read from this file and mounted at boot time as well. Your
system will also read any other mount points listed in this file, one per line, and mount them. Basically,
just about any kind of storage you can think of can be added to this file and automatically mounted. Even
network shares from Windows servers can be added here. It won’t judge you (unless you make a typo).

As an example, here are the contents of /etc/fstab on one of my machines:

Figure 9.8: Viewing the contents of the /etc/fstab file

When you install Ubuntu Server, the /etc/fstab file is created for you and populated with a line
for each of the partitions the installer created during installation. On the server I used to grab the
example fstab content, I have a single partition for the root filesystem, and you can also see where
the swap file is mentioned.

Each partition is typically designated with a Universally Unique Identifier (UUID) instead of the /dev/
sdaX naming convention you might be more accustomed to if you’ve worked with storage devices in
the past. In my output, you can see UUID dm-uuid-LVM-H8VEs7qDbMgv..., which refers to my root
filesystem, and you can also see that I have a swap file located at /swap.img.

The concept of a UUID has been around for a while, but there’s nothing stopping you from replacing
the UUID with the actual partition names (such as /dev/sda1 or similar). If you were to do that, the
server would still boot, and you probably wouldn’t notice a difference (assuming you didn’t make a typo).

Nowadays, UUIDs are preferred over common device names due to the fact that the names of devices
can change depending on where you place them physically (such as which particular Serial Advanced
Technology Attachment (SATA) port a hard disk is plugged into, which of your USB ports an external
drive is connected to, and so on) or how you order them (in the case of virtual disks).

Chapter 9 185

Add to this the fact that removable media can be inserted or removed at any time, and you have a
situation where you don’t really know what name each device is going to have at any one time. For
example, your external hard drive may be named /dev/sdb1 on your system now, but it may not be
the next time you mount it if something else you connect claims the name of /dev/sdb1. This is one
situation in which the concept of UUIDs comes in handy. The UUID of a device will not change if you
reorder your disks (but it will change if you reformat the volume). As stated in Figure 9.8, you can
easily list the UUIDs of your volumes with the blkid command:

blkid

The output will show you the UUID of each device attached to your system, and you can use this
command any time you add new volumes to your server to list your UUIDs. This is also the first step
in adding a new volume to your /etc/fstab file. While I did say that using UUIDs is not required, it’s
definitely recommended and can save you from trouble later on.

Each line of an fstab entry is broken down into several columns, each separated by spaces or tabs.
There isn’t a set number of spaces necessary to separate each column; in most cases, spaces are only
used to line up each column to make them easier to read. However, at least one space is required.

In the first column of the example fstab file, we have the device identifier, which can be the UUID
or label of each device that differentiates it from the others. (You can add a label to a device while
formatting it with the -L argument with mkfs commands.) In the second column, we have the location
we want the device to be mounted to. In the case of the root filesystem, this is /, which (as you know)
is the beginning of the Linux filesystem. The third entry in the screenshot (for swap) has a mount
point of none, which means that a mount point is not necessary for this device. In the third column,
we have the filesystem type, the first two being ext4, and the third having a type of swap.

In the fourth column, we have a list of options for each mount separated by a comma. In this case,
we only have one option for each of the example lines. With the root filesystem, we have an option of
errors=remount-ro, which tells the system to remount the filesystem as read-only if an error occurs.
Such an issue is rare but will keep your system running in read-only mode as best it can if something
goes wrong. The swap partition has a single option of sw. There are many other options that can be
used here, so feel free to consult the man pages for a list. We will go over some of these options in
this section.

The fifth and sixth columns refer to dump and pass respectively, which on my system are 0 and 0 for
each line. The dump partition is almost always 0 and can be used with a backup utility to determine
whether the filesystem should be backed up (0 for no, and 1 for yes). In most cases, just leave this
at 0 since this is rarely ever used by anything nowadays. The pass field refers to the order in which
fsck will check the filesystems. The fsck utility scans hard disks for filesystem errors in the case of a
system failure or a scheduled scan. The possible options for pass are 0, 1, or 2. With 0, the partition
is never checked with fsck. If set to 1, the partition is checked first. Partitions with a pass of 2 are
considered a second priority and checked last. As a general rule of thumb, consider using 1 for your
main filesystem and 2 for all others. It’s not uncommon for cloud server providers to use 0 for both
fields. This may be because if a disk does undergo a routine check, it would take considerably longer
to boot up. In a cloud environment, you can’t always wait very long to get a server up and running.

Managing Storage Volumes186

Now that we understand all the columns of a typical fstab entry, we can work through adding another
volume to the fstab file.

Adding to the /etc/fstab file
To add another volume to the fstab file, we first need to know the UUID of the volume we would like
to add (assuming it’s a hard disk or virtual disk). Again, we do that with the blkid command:

blkid /dev/sdb1

Notice that I used the device name of /dev/sdb1 as an argument. This is because I want to specifically
fetch the UUID of the new device we added. The output of that command will give us the UUID of that
device, so it can be added to the /etc/fstab file. Copy that down somewhere, as we’ll need it shortly.
Next, we need to know where we want to mount the volume. Go ahead and create the directory now, or
use an existing directory if you wish. For example, you could create the directory /mnt/extra_storage
for this purpose:

sudo mkdir /mnt/extra_storage

At this point, we should have all we need in order to add a new entry to fstab. To do so, we’ll need to
open the file in a text editor and then create a new line after all the others. If you don’t have a preferred
editor, you can use the nano editor:

sudo nano /etc/fstab

For example, the /etc/fstab file after adding an entry for /dev/sdb would look similar to the following:

Figure 9.9: The /etc/fstab file after adding a new entry to it

Chapter 9 187

In my example, I created a comment line with a little note about what the extra volume will be used for
(Extra storage). It’s always a good idea to leave comments, so other administrators will have a clue
regarding the purpose of the extra storage. Then, I created a new line with the UUID of the volume,
the mount point for the volume, the filesystem type, defaults option, and a dump/pass of 0 and 0.

The defaults option is one I’ve not mentioned before. By using defaults as your mount option in fstab,
your mount will be given several useful options in one shot, without having to list them individually.
Among the options included with defaults are the following, which are worth an explanation:

•	 rw: Device will be mounted read/write
•	 exec: Allow files within this volume to be executed as programs
•	 auto: Automatically mount the device at boot time
•	 nouser: Only root is able to mount the filesystem
•	 async: Output to the device should be asynchronous

Depending on your needs, the options included with defaults may or may not be ideal. Instead, you
can call the options out individually, separated by commas, choosing only the ones you need. For
example, with regard to rw, you may not want users to be allowed to change the content. In fact, I
strongly recommend that you use ro (read-only) instead unless your users have a very strong use case
for needing to make changes to files. I’ve actually learned this the hard way, where I’ve experienced
an entire volume getting completely wiped out (and no one admitted to clearing the contents). This
volume included some very important company data. From that point on, I mandated ro being used
for everything, with a separate rw mount created, with only a select few (very responsible) people
having access to it.

The exec option may also not be ideal. For example, if your volume is intended for storing files and
backups, you may not want scripts to be run from that location. By using the inverse of exec (noexec),
you can prevent scripts from running to create a situation where users are able to store files on the
volume but not execute programs that are stored there.

Another option worth explaining is auto. The auto option basically tells your system to automatically
mount that volume whenever the system boots or when you enter the following command:

sudo mount -a

When executed, sudo mount -a will mount any entry in your /etc/fstab file that has the auto
option set. If you’ve used defaults as an option for the mount, those will be mounted as well since
defaults implies auto. This way, you can mount all filesystems that are supposed to be mounted
without rebooting your server (this command is safe to run whenever, as it will not disrupt anything
that is already mounted).

The opposite of the auto option is noauto, which can be used instead. As you can probably guess by
the name, an entry in fstab with the noauto option will not be automatically mounted and will not be
mounted when you run mount -a. Instead, entries with this option will need to be mounted manually.

Managing Storage Volumes188

You may be wondering, then, what the point is of including an entry in /etc/fstab just to use noauto,
which kind of seems to defeat the purpose. To explain this better, here is an example fstab entry with
noauto being used:

UUID=e51bcc9e-45dd-45c7 /mnt/ext_disk ext4 rw,noauto 0 0

Here, let’s say that I have an external disk that I only mount when I’m performing a backup. I wouldn’t
want this device mounted automatically at boot time (I may not always have it connected to the server),
so I use the noauto option. But since I do have an entry for it in /etc/fstab, I can easily mount it any
time after I connect it with the following command:

sudo mount /mnt/ext_disk

Notice that I didn’t have to include the device name or options; only the destination path for the mount.
The mount command knows what device I’m referring to since I have an entry in the /etc/fstab file
for a device to be mounted at /mnt/ext_disk. This saves me from having to type the device name and
options each time I want to mount the device. So, in addition to mounting devices at boot time, the
/etc/fstab file also becomes a convenient place to declare devices that may be used on an on-demand
basis but aren’t always attached.

One final option I would like to cover before we move on is users. When used with a mount in /etc/
fstab, this allows regular users (users other than root) to mount and unmount the filesystem. This
way, root or sudo will not be necessary at all for a mount used with this option. Use this with care,
but it can be useful if you have a device with non-critical data that you don’t mind your users having
full control over when mounting and unmounting.

While the concept of a text file controlling which devices are mounted on the system may seem odd at
first, I think you’ll appreciate being able to view a single file in order to find out everything that should
be mounted and where it should be mounted. As long as administrators add all on-demand devices to
this file, it can be a convenient place to get an overview of the filesystems that are in use on the server.
As a bonus, you can also use the mount command (with no options) to have the system provide you
with a list of everything that’s mounted. Go ahead and try that, and I’ll meet you in the next section.

Backing up and restoring volumes
Since we’re dealing with servers, the data that’s being stored on our storage devices is no doubt going
to be extremely important. While it’s normal to have a few test servers for use as test subjects in a
typical environment, our servers usually exist to carry out a very important task. I can tell you from
first-hand experience, never put too much trust in storage devices. In fact, I recommend not trusting
them at all. I consider all storage to be temporary, as hard drives can and do break. If your important
data is only stored on one device, it’s not safe. In this section, I’m going to discuss some very important
topics around backups.

First, consider RAID volumes. We haven’t discussed them in this chapter because while the technology
can still be beneficial, it’s not as popular as it once was. Don’t get me wrong, there’s still a place for
RAID, but it’s just not as popular as it used to be. RAID allows you to join multiple disks in various
configurations, which can result in a lower chance of losing data.

Chapter 9 189

For example, RAID level 1 ensures that two hard disks always have the same data. If one of the disks
physically fails, then you haven’t actually lost anything. When you replace a failed disk in RAID, it will
rebuild the array with the new disk and then you’ll again benefit from having some expandability. RAID
5 allows you to have multiple disks to benefit from more space, and RAID 6 is the same but it allows
you to have two disks fail before you lose data, rather than just one. Generally, that’s the difference
between one level of RAID and another; how many disks are allowed to fail before it becomes a problem.

However, RAID suffers from some serious problems. The worst is that it’s not a backup solution. It
doesn’t advertise itself to be that, but many administrators mistakenly assume that their data is safe
when utilizing RAID. The truth is, the level of protection RAID offers you is minimal. If there’s a
lightning storm and a power surge gets past your surge protector and fries a hard disk, chances are
the other one will fry too. Generally, the environmental factors that cause one hard disk to fail will
likely cause other disks to fail too. Worse yet, if a criminal breaks into your server room, grabs your
server, and runs away with it, then the crook got away with your server and all the disks in your RAID
anyway, so there are various scenarios where it won’t save you. RAID can definitely be good to have,
but it’s more of a convenience than anything else.

Backups that are actually good exist off of the server somewhere else. The further away the backup is
from the source server, the better. If you store your backups in a drawer outside of your server room,
then that’s certainly better than leaving an external backup disk connected all the time (which can also
be susceptible to power surges just the same as an internal disk). But if a terrible storm takes out your
entire building, then having the backup disk stored in the same physical location will work against you.

It may seem as though I’m being a bit overly dramatic here. But actually, I’m not. These situations can
and do happen. Successful backups are resilient, and allow you to get your servers up and running
quickly. Backups of your data are on a more important level than that, as some companies can go out
of business if they lose their important files, which can include things like schematics that enable
the company to be in business in the first place. As a system administrator, you’ll need to develop a
backup scheme that will account for as many scenarios as possible.

An effective backup routine will include several layers. Having an external disk is a useful backup, but
why not have more than one, just in case one of them fails? Perhaps you can store one off-site, and
swap the off-site and on-site backup disks weekly. In addition, perhaps you may use a command such
as rsync to copy the files on your server to a remote server in another location periodically. You may
even consider cloud backup solutions, which are another great addition.

In this section, I can’t give you a backup scheme for your organization because the layout of your
backup system will depend on the needs of the organization, which are different from one company
to the next. But what I can leave you with are some tips:

•	 Make sure to test your backups regularly. Simply having a backup isn’t enough—they have to
actually work! Try to restore data from a backup periodically to test the effectiveness.

•	 Have at least three layers in your backup scheme, with at least one being off-site. This can be
a combination of external hard disks, network-attached storage, cloud storage, mirroring data
to another server in another location, or whatever makes the most sense for your organization.

Managing Storage Volumes190

•	 Consider encryption. Although it’s beyond the scope of this chapter, if your backups fall into
the wrong hands, then protected data may leak and be readable by people you don’t want to
have the information.

•	 Check the policies of your organization, and ensure that your backup scheme is compliant.
Not all companies have such a scheme, but if yours does, this is critical. Consider retention
(how long backups must be kept for) and how frequently backups must be updated. If you don’t
have organizational policies, consult a lawyer to determine whether there are legal retention
requirements for the industry of your organization.

Above all else, the point is to keep your data safe. So far in this book, we’ve looked at creating additional
volumes and mounting them, and we even took a quick look at rsync earlier on. You’ve already learned
some of the tools that can be made a part of a backup scheme, and you’ll learn about more methods
before the book comes to a close. For now, keep these points in mind as you proceed through the book,
and consider how each new skill you learn can be implemented as part of a backup scheme, if applicable.

LVM is one of my favorite technologies, giving us additional flexibility with our storage. In fact, let’s
take a look at that now.

Utilizing LVM
The needs of your organization will change with time. While we as server administrators always do
our best to configure resources with long-term growth in mind, budgets and changes in policy always
seem to get in our way. LVM is something that I’m sure you’ll come to appreciate. In fact, technologies
such as LVM are those things that make Linux the champion when it comes to scalability and cloud
deployments. With LVM, you are able to resize your filesystems online, without needing to reboot
your server.

Take the following scenario for example. Say you have an application running on a virtualized
production server—a server that’s so important that downtime would cost your organization serious
money. When the server was first set up, perhaps you gave the application’s storage directory a 100
GB partition, thinking it would never need more than that. Now, with your business growing, it’s not
only using a lot of space, but you’re about to run out! What do you do? If the server was initially set
up with LVM, you could add an additional storage volume, add it to your LVM pool, and grow your
partition, all without rebooting your server! On the other hand, if you didn’t use LVM, you’re forced
to find a maintenance window for your server and add more storage the old-fashioned way, which
would include having it be inaccessible for a time.

With physical servers, you can install additional hard drives and keep them on standby without utilizing
them to still gain the benefit of growing your filesystem online, even though your server isn’t virtual. In
addition, if your server supports hot-plugging, you can still add additional volumes without powering
the server down.

It’s for this reason that I must stress that you should always use LVM on storage volumes in virtual
servers whenever possible. Let me repeat myself: you should always use LVM on storage volumes
when you are setting up a virtual server! If you don’t, this will eventually catch up with you when your
available space starts to run out and you find yourself working over the weekend to add new disks.

Chapter 9 191

This process might involve manually syncing data from one disk to another and then migrating your
users to the new disk. This is not a fun experience, believe me. You might not think you’ll be needing
LVM right now, but you never know.

Getting started with LVM
When setting up a new server via Ubuntu’s installer, you’re given the option to use LVM during
installation. But it’s much more important for your storage volumes to use LVM, and by those, I mean
the volumes where your users and applications will store their data. LVM is a good choice for your
Ubuntu Server’s root filesystem if you’d like the root filesystem to also benefit from the features of LVM.
In order to get started with LVM, there are a few concepts that we’ll need to understand, specifically
volume groups, physical volumes, and logical volumes.

A volume group is a namespace given to all the physical and logical volumes that you wish to use with
that implementation of LVM. Basically, a volume group is the highest name that encompasses your
entire implementation of an LVM setup. Think of it as a kind of container that is able to contain disks.
An example of this might be a volume group named vg-accounting. This volume group would be used
as a location for the accounting department to store their files. It will encompass the physical volumes
and logical volumes that will be in use by these users. It’s important to note that you aren’t limited to
just a single volume group; you can have several, each with its own disks and volumes.

A physical volume is a physical or virtual hard disk that is a member of a volume group. For example,
the hypothetical vg-accounting volume group may consist of three 100 GB hard disks, and each would
be considered a physical volume. Keep in mind that these disks are still referred to as physical volumes
in the context of LVM, even when the disks are virtual. Basically, any block device that is owned by a
volume group is a physical volume.

Finally, logical volumes are similar in concept to partitions. Logical volumes can take up a portion, or
the whole, of a disk, but unlike standard partitions, they may also span multiple disks. For example,
a logical volume can include three 100 GB disks and be configured such that you would receive a
cumulative total of 300 GB. When mounted, users will be able to store files there just as they would a
single partition on a standard disk. When the volume gets full, you can add an additional disk and then
grow the partition to increase its size. Your users would see it as a single storage area, even though it
may consist of multiple disks.

The volume group can be named anything you’d like, but I always give mine names that begin with
vg- and end with a name detailing its purpose. As I mentioned, you can have multiple volume groups.
Therefore, you can have vg-accounting, vg-sales, and vg-techsupport (and so on) all on the same
server. Then, you assign physical volumes to each. For example, you can add a 500 GB disk to your
server and assign it to vg-sales. From that point on, the vg-sales volume group owns that disk. You’re
able to split up your physical volumes in any way that makes sense to you. Then, you can create logical
volumes utilizing these physical volumes, which is what your users will use.

I think it’s always best to work through an example when it comes to learning a new concept, so I’ll
walk you through such a scenario. In my case, I just created a local Ubuntu Server VM on my machine
via VirtualBox, and then I added four additional 20 GB disks after I installed the distribution.

Managing Storage Volumes192

Virtualization is a good way to play around with learning LVM if you don’t have a server available with
multiple free physical disks.

To get started with LVM on a server that isn’t already using it, you’ll first need to have at least one
additional (unused) volume, and install the required packages, which may or may not be present on
your server. To find out if the required lvm2 package is installed on your server, execute the following
command:

apt search lvm2 |grep installed

If it’s not present (the output of the previous command doesn’t include [installed,automatic]), the
following command will install the lvm2 package and its dependencies:

sudo apt install lvm2

Next, we’ll need to take an inventory of the disks we have available to work with. You can list them with
the fdisk -l command as we’ve done several times now. In my case, I’ve added a few new volumes
to my server, so now I have /dev/sdb, /dev/sdc, /dev/sdd, and /dev/sde to work with. The names of
your disks will be different depending on your hardware or virtualization platform, so make sure to
adjust all of the following commands accordingly.

To begin, we’ll need to configure each disk to be used with LVM, by setting up each one as a physical
volume. Note that we don’t need to format a storage device, or even use fdisk to set it up before
beginning the process of setting up LVM. Formatting actually comes later in this particular process.
The pvcreate command is the first command we run to configure our disks for use with LVM. Therefore,
we’ll need to run the pvcreate command against all of the drives we wish to use for this purpose. For
example, if I had four disks I wanted to use with LVM, I would run the following to set them up:

sudo pvcreate /dev/sdb
sudo pvcreate /dev/sdc
sudo pvcreate /dev/sdd
sudo pvcreate /dev/sde

And so on, for however many disks you plan on using.

Chapter 9 193

To confirm that you have followed the steps correctly, you can use the pvdisplay command as root
to display the physical volumes you have available on your server:

Figure 9.10: Output of the pvdisplay command on a sample server

The screenshot shows only one volume, as it had to be formatted to fit this page. The pvdisplay
command will show more output if you scroll up. Although we have some physical volumes to work
with, none of them are assigned to a volume group. In fact, we haven’t even created a volume group
yet. We can now create our volume group with the vgcreate command, where we’ll give our volume
group a name and assign our first disk to it:

sudo vgcreate vg-test /dev/sdb

Managing Storage Volumes194

Here, I’m creating a volume group named vg-test and I’m assigning it one of the physical volumes I
prepared earlier (/dev/sdb). Now that our volume group is created, we can use the vgdisplay command
with sudo to view details about it, including the number of assigned disks (which should now be 1):

Figure 9.11: Output of the vgdisplay command on a sample server

At this point, if you created four virtual disks as I have, you have three more disks left that are not part
of the volume group. Don’t worry, we’ll come back to them later. Let’s forget about them for now as
there are other concepts to work on at the moment.

All we need to do at this point is to create a logical volume and format it. Our volume group can contain
all of, or a portion of, the disk we’ve assigned to it. With the following command, I’ll create a logical
volume of 5 GB from the virtual disk I added to the volume group:

sudo lvcreate -n myvol1 -L 5g vg-test

The command may look complicated, but it’s not. In this example, I’m giving my logical volume the
name myvol1 with the -n option. Since I only want to give it 5 GB of space, I use the -L option and
then 5g to represent 5 GB. Finally, I give the name of the volume group that this logical volume will
be assigned to. You can run lvdisplay with sudo to see information regarding this volume:

Chapter 9 195

Figure 9.12: Output of the lvdisplay command on a sample server

At this point, we should have everything we need as far as setting up LVM is concerned. But we still
need to format a volume before we can use it, similar to a non-LVM disk.

Formatting logical volumes
Next, we need to format our logical volume so that it can be used. However, as always, we need to
know the name of the device so that we know what it is we’re formatting. With LVM this is easy. The
lvdisplay command gave us this already; you can see it in the output (it’s the third line down in Figure
9.12, under LV Path). Let’s format it with the ext4 filesystem:

sudo mkfs.ext4 /dev/vg-test/myvol1

And now this device can be mounted as any other hard disk. I’ll mount mine at /mnt/lvm/myvol1, but
you can use any directory name you wish:

sudo mount /dev/vg-test/myvol1 /mnt/lvm/myvol1

To check our work, execute df -h to ensure that our volume is mounted and shows the correct size.
We now have an LVM configuration containing just a single disk, so this isn’t very useful. The 5 GB
I’ve given it will not likely last very long, but there is some remaining space we can use that we haven’t
utilized yet. With the following lvextend command, I can resize my logical volume to take up the
remainder of the physical volume:

sudo lvextend -n /dev/vg-test/myvol1 -l +100%FREE

Managing Storage Volumes196

In this case, +100%FREE is the argument that clarified that we are wanting to use the entirety of the
remaining space for the logical volume. If done correctly, you should see output similar to the following:

Logical volume vg-test/myvol1 successfully resized.

Now my logical volume is using the entire physical volume I assigned to it. Be careful, though, because
if I had multiple physical volumes assigned, that command would’ve claimed all the space on those
as well, giving the logical volume a size that is the total of all the space it has available, across all its
disks. You may not always want to do this, but since I only had one physical volume anyway, I don’t
mind. Go ahead and check your free space again with the df -h command:

df -h

Unfortunately, it’s not showing the extra space we’ve given the volume. The output of df is still showing
the size the volume was before. That’s because although we have a larger logical volume, and it has
all the space assigned to it, we didn’t actually resize the ext4 filesystem that resides on this logical
volume. To do that, we will use the resize2fs command:

sudo resize2fs /dev/mapper/vg--test-myvol1

The double-hyphen in the previous command is intentional, so make sure you’re typing the command
correctly.

If run correctly, you should see output similar to the following:

The filesystem on /dev/mapper/vg--test-myvol1 is now 5241856 (4k) blocks long.

Now you should see the added space as usable when you execute df -h. The coolest part is that we
resized an entire filesystem without having to restart the server. In this scenario, if our users have
got to the point where they have utilized the majority of their free space, we will be able to give them
more space without disrupting their work.

However, you may have additional physical volumes that have yet to be assigned to a volume group.
In my example, I created four and have only used one in the LVM configuration so far. We can add
additional physical volumes to our volume group with the vgextend command. In my case, I’ll run
this against the three remaining drives. If you have additional physical volumes, feel free to add yours
with the same commands I use, but substitute my device names with yours:

sudo vgextend vg-test /dev/sdc
sudo vgextend vg-test /dev/sdd
sudo vgextend vg-test /dev/sde

You should see a confirmation similar to the following:

Volume group "vg-test" successfully extended

When you run pvdisplay now, you should see the additional physical volumes attached that weren’t
showing there before. Now that we have extra disks in our LVM configuration, we have some additional
options.

Chapter 9 197

We could give all the extra space to our logical volume right away and extend it as we did before.
However, I think it’s better to withhold some of the space from our users. That way, if our users do
use up all our available space again, we have an emergency reserve of space we could use at a pinch
if we needed to while we figure out the long-term solution. In addition, LVM snapshots (which we will
discuss soon) require you to have unallocated space in your LVM setup.

The following example command will add an additional 10 GB to the logical volume:

sudo lvextend -L+10g /dev/vg-test/myvol1

And finally, make the free space available to the filesystem:

sudo resize2fs /dev/vg-test/myvol1

With very large volumes, the resizing may take some time to complete. If you don’t see the additional
space right away, you may see it gradually increase every few seconds until all the new space is
completely allocated.

Removing volumes with LVM
Finally, you may be curious about how to remove a logical volume or volume group. For these purposes,
you would use the lvremove or vgremove commands. It goes without saying that these commands
are destructive, but they are useful in situations where you want to delete a logical volume or volume
group. To remove a logical volume, the following syntax will do the trick:

sudo lvremove vg-test/myvol1

Basically, all you’re doing is giving the lvremove command the name of your volume group, a forward
slash, and then the name of the logical volume within that group that you would like to remove. To
remove the entire volume group, the following command and syntax should be fairly self-explanatory:

sudo vgremove vg-test

You can only remove a logical volume if it’s not in use, and this may not be something you’ll do very
often, but if you ever do need to decommission an LVM component, then there are commands that
will enable you to do so.

Hopefully, you’re convinced by now how awesome LVM is. It allows you flexibility over your server’s
storage that other platforms can only dream of. The flexibility of LVM is one of the many reasons
why Linux excels in the cloud market. These concepts can be difficult to grasp at first if you haven’t
worked with LVM before. But thanks to virtualization, playing around with LVM is easy. I recommend
you practice creating, modifying, and destroying volume groups and logical volumes until you get the
hang of it. If the concepts aren’t clear now, they will be with practice.

In this section, you saw some ways in which LVM can benefit you; it allows you to take the storage of
your server to the next level, even expanding it and growing it on demand. However, LVM also has
additional tricks up its sleeve. It even allows you to create snapshots as well. We’ll cover this useful
ability next.

Managing Storage Volumes198

Understanding LVM snapshots
LVM snapshots allow you to capture a logical volume at a certain point in time and preserve it. After
you create a snapshot, you can mount it as you would any other logical volume and even revert your
volume group to the snapshot if something fails. In practice, this is useful if you want to test some
potentially risky changes to files stored within a volume, but want the insurance that if something
goes wrong, you can always undo your changes and go back to how things were. LVM snapshots allow
you to do just that. LVM snapshots require you to have some unallocated space in your volume group.

However, LVM snapshots are definitely not a viable form of backup. For the most part, these snapshots
are best when used as a temporary holding area when running tests or testing out experimental
software before rolling out changes to production systems. During Ubuntu’s installation process, you
were offered the option to create an LVM configuration. Therefore, you can use snapshots to test how
security updates will affect your server if you used LVM for your root filesystem. If the new updates
start to cause problems, you can always revert back. When you’re done testing, you should merge or
remove your snapshot.

So, why did I refer to LVM snapshots as a temporary solution and not a backup? First, similar to our
discussion earlier, backups aren’t secure if they are stored on the same server that’s being backed
up. It’s always important to save backups of the server at least, preferably off-site. But what’s worse
is that if your snapshot starts to use up all available space in your volume group, it can get corrupted
and stop working. Therefore, this is a feature you would use with caution, just as a means of testing
something, and then revert back or delete the snapshot when you’re done experimenting. Don’t leave
an LVM snapshot hanging around for too long.

When you create a snapshot with LVM, what happens is a new logical volume is created that is a
clone of the original. Initially, no space is consumed by this snapshot. But as you run your server and
manipulate files in your volume group, the original blocks are copied to the snapshot as you change
them, to preserve the original logical volume. If you don’t keep an eye on usage, you may lose data if
you aren’t careful and the logical volume will fill up.

To show this in an example, the following command will create a snapshot (called mysnapshot) of the
myvol1 logical volume:

sudo lvcreate -s -n mysnapshot -L 4g vg-test/myvol1

You should see the following output:

Logical volume "mysnapshot" created.

With that example, we’re using the lvcreate command, with the -s option (snapshot) and the -n option
(which allows us to name the snapshot), where we declare a name of mysnapshot. We’re also using
the -L option to designate a maximum size for the snapshot, which I set to 4 GB in this case. Finally,
I give it the volume group and logical volume name, separated by a forward slash (/). From here, we
can use the lvs command to monitor its size.

Chapter 9 199

Since we’re creating a new logical volume when we create a snapshot, we can mount it as we would
a normal logical volume. This is extremely useful if we want to pull a single file without having to
restore the entire thing.

But what about restoring the snapshot? One of the major benefits of snapshots is the ability to “roll
back” to when the snapshot was taken. Essentially, this allows you to test changes to the server and
then undo those changes. To roll back to a snapshot, we can do so with the lvconvert command:

sudo lvconvert --merge vg-test/mysnapshot

The output will look similar to the following:

Merging of volume mysnapshot started.
myvol1: Merged: 100.0%

However, it’s important to note, that, unlike being able to resize a logical volume online, we cannot
merge a snapshot while it is in use. If you do, the changes will take effect the next time it is mounted.
Therefore, you can either unmount the logical volume before merging or unmount and remount after
merging. Afterward, you’ll see that the snapshot is removed the next time you run the lvs command.

Since you cannot merge (roll back) a snapshot that is in use, if the snapshot is of the root filesystem,
you’ll have to reboot the server for the rollback to finalize.

If you’d like to make the snapshot permanent, which finalizes all of the changes you’ve made since
the snapshot was first taken, we can use the lvremove command. For our example snapshot in this
section, we can use the following command to make the snapshot permanent:

sudo lvremove vg-test/mysnapshot

As you can probably conclude based on the name of the command, lvremove deletes the snapshot. The
act of deleting the snapshot is actually what makes its changes final, while the lvconvert command
mentioned earlier rolls back to when the snapshot was taken.

LVM snapshots are definitely a useful feature, even if it’s not supposed to be considered a backup
solution. My favorite use case for these snapshots is to take a snapshot of the root filesystem before
installing all available updates. After I reboot, and the updates take effect, I can either delete the
snapshot (if everything seems to be fine) or revert back to the snapshot if the updates seem to be
causing a problem. If nothing else, LVM snapshots are yet another trick you can use when and if the
need for it comes up.

Summary
Efficiently managing the storage of your servers will ensure that things continue to run smoothly, as
a full filesystem can definitely cause your server to grind to a halt. Thankfully, Linux servers feature
a very expansive toolset for managing your storage, some of which are a source of envy for other
platforms. As Linux server administrators, we benefit from technologies such as LVM and utilities
such as ncdu, as well as many others. In this chapter, we explored these tools and how to manage our
storage. We covered how to format, partition, mount, and unmount volumes, as well as manage the
fstab file, LVM, monitor disk usage, and more.

Managing Storage Volumes200

In the next episode of our Ubuntu Server saga, we’ll work through connecting to networks. We’ll
configure our server’s hostname, work through examples of connecting to other servers via OpenSSH,
and take a look at IP addressing.

Relevant videos
•	 Linux Crash Course – fstab: https://linux.video/fstab
•	 Linux EssentialsCrash Course – Formatting and mounting storage volumes:

https://linux.video/format-mount

•	 LVM deep dive: https://linux.video/lvm

Further reading
•	 Ubuntu LVM documentation: https://learnlinux.link/u-lvm

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/fstab
https://linux.video/format-mount
https://linux.video/lvm
https://learnlinux.link/u-lvm
https://packt.link/LWaZ0

10
Connecting to Networks

Linux networks took the IT industry by storm. Many organizations use Linux in their data centers, on
both physical servers and in the cloud. Ubuntu Server is among the most popular choices for running
mission-critical applications, but without a stable network to connect the individual components of
your infrastructure together, even the most powerful server hardware will be ineffective.

So far in this book, we’ve worked with a single Ubuntu Server instance. Here, we begin a two-part look
at networking in Linux. In this chapter, we’ll discuss topics related to initial network connectivity and
remote management. We’ll continue learning additional networking topics in Chapter 11, Setting Up
Network Services, where we’ll work on building and configuring additional components that will enable
your servers to communicate more effectively, which will result in a strong foundational network that
will serve your needs for years to come.

In this episode of our Ubuntu adventure, we will cover:

•	 Setting the hostname
•	 Managing network interfaces
•	 Assigning static IP addresses
•	 Understanding Linux name resolution
•	 Getting started with OpenSSH
•	 Getting started with SSH key management
•	 Simplifying SSH connections with a config file

To get started in our exploration of networking, we should first give each of our Ubuntu servers its
own identity; basically, we should give them a name to help distinguish each from the others.

Setting the hostname
During installation, you were asked to create a hostname for your server. Specifically, the field was
labeled Your server's name during the initial setup process. At that time, our goal was to simply get
an Ubuntu Server installation set up for working through the examples in this book. At this point, you
may consider changing the hostname of your server.

Connecting to Networks202

When we utilize OpenSSH to remotely manage our servers (as we’ll do later on in this chapter), the
hostname is shown on the command line. That can be very confusing if all servers have the same
name. More importantly, the hostname of a server gives it an identity. When it comes to real production
deployments of Ubuntu Server, each individual server should have its own designated purpose, and
be named accordingly. Often, organizations will have their own naming scheme. Perhaps web servers
in a company are named similar to webserver-01, or with a fully qualified domain name, such as
webserver-01.example.com.

In this book, I won’t assume any particular naming scheme, so when we do work through changing
the hostname, feel free to adjust the name as you see fit. If you don’t have a naming scheme (but would
like to create one) feel free to get creative. I’ve seen quite a few variations, from naming servers after
cartoon characters (who wouldn’t want a server named daffy-duck?), to Greek gods or goddesses.
Some companies choose to be a bit boring and come up with naming schemes consisting of a series
of characters separated by hyphens, with codes representing which rack the server is in, as well as
its purpose. You can create your own naming convention if you haven’t already, and no matter what
you come up with, I won’t judge you.

As I mentioned, the hostname of your server is its identity. It identifies your server to the rest of the
network. While a simple hostname, such as ubuntu, is fine if you have just one host, it would get
confusing really quickly if you kept the default on every Ubuntu Server within your network. Giving
each server a descriptive name helps you tell them apart from each other. But there’s more to a server’s
name than its hostname, which we’ll get into in Chapter 11, Setting Up Network Services, when we discuss
DNS. But for now, we’ll work through viewing and configuring the hostname, so you’ll be ready to
make your hostname official with a DNS assignment, when we come to it.

So, how do you view your hostname? One way is to simply look at your shell prompt; you’ve probably
already noticed that your hostname is included there. While you can customize your shell prompt in
many different ways, the default shows your current hostname. However, depending on what you’ve
named your server, it may or may not show the entire name. Basically, the default prompt (known as
a PS1 prompt, in case you were wondering) shows the hostname only until it reaches the first period.
For example, if your hostname is dev.mycompany.org, your prompt will only show dev. To view the
entire hostname, simply enter the hostname command:

Figure 10.1: Output from the hostname command

Changing the hostname is fairly simple. To do this, we can use the hostnamectl command as root or
with sudo. If, for example, I’d like to change my hostname from dev.mynetwork.org to dev2.mynetwork.
org, I would execute the following command:

sudo hostnamectl set-hostname dev2.mynetwork.org

Chapter 10 203

Simple enough, but what does that command actually do? Well, I’d love to give you a fancy outline,
but all it really does is change the contents of a text file (specifically, /etc/hostname). To see this for
yourself, feel free to use the cat command to view the contents of this file before and after making
the change with hostnamectl:

cat /etc/hostname

You’ll see that this file contains only your hostname.

Once you change your hostname, you may start seeing an error message similar to the following after
executing some commands:

unable to resolve host dev.mynetwork.org

This error means that the computer is no longer able to resolve your local hostname. This is due
to the fact that the /etc/hostname file is not the only file where your hostname is located; it’s also
referenced in /etc/hosts. Unfortunately, the hostnamectl command doesn’t update /etc/hosts for
you, so you’ll need to edit that file yourself to make the error go away. Here’s what an /etc/hosts file
looks like on an example server:

Figure 10.2: Sample contents from an /etc/hosts file

The first two entries, in this example, refer to the local machine itself. Localhost addresses, also
known as loopback addresses, allow the machine to essentially reach itself. If you were to use the
ping command against the 127.0.0.1 address, the reply would come from the machine that executed
the command, not from another host on the network. On the first line, we have the following:

127.0.0.1 localhost

If you were to use any networking command to attempt to communicate with the local server, such as
pinging 127.0.0.1 or localhost, the /etc/hosts file on this line declares that this communication
is directed toward the underlying server itself.

Connecting to Networks204

With the second line in the example screenshot, we have the following:

127.0.1.1 dev.mynetwork.org dev

Depending on your configuration, such as whether you are using a physical server, a virtualization
platform, or a cloud server provider, that line may or may not be present. You can add that line if it’s
missing, but we’ll talk about that more in a moment.

Essentially, that particular line identifies that the local server can also be reached at the IP address
127.0.1.1, the fully qualified domain name of dev.mynetwork.org, as well as the simplified form of
dev. A fully qualified domain name consists of the name of the server (dev in this case) as well as the
domain name for the organization (mynetwork.org in this example). This enables you to ping your local
server directly from that server by using the name dev.mynetwork.org or the simplified form of dev.

If you don’t have a domain name to use with your servers, you can leave the fully qualified domain
name out of the /etc/hosts file. So in our example, that line would look like the following if there
was no domain:

127.0.1.1 dev

Going back to our example of changing a hostname on a server, I mentioned that you can use the
hostnamectl command to do that, but that command doesn’t update the /etc/hosts file for you, it only
updates the /etc/hostname file. It’s a best practice to also update the /etc/hosts file to match. You
can avoid using the hostnamectl command altogether and manually edit the /etc/hosts and /etc/
hostname files, which is actually my preferred method. If I have to manually edit a text file, regardless
of whether or not I use the hostnamectl command, I figure that I may as well use a text editor for both.

The main takeaway, though, is to give your servers an identity that makes sense and matches the role
that the server will fill within your network. At a typical organization, you’ll have web servers, file
servers, database servers, and more. A consistent and logical naming scheme will just make everything
that much easier.

Now that we have learned how to give our servers an identity, we can learn how to manage network
interfaces.

Managing network interfaces
Networking is critical for server infrastructure. Without a network, servers cannot communicate with
one another, and users will be unable to access them. In order for a server to connect to a network, it
needs to have a network interface installed. Most servers will have a standard wired Ethernet adapter
installed, allowing you to plug in a network cable to connect it to a switch. Assuming our server’s
hardware has been properly detected by Ubuntu, this is handled pretty much automatically. However,
the automatic configuration is not always ideal. Perhaps we want to customize the IP address or settings
related to the connection.

First, we need to understand how to view the current connection parameters that the network card
of our server currently has in effect. That’s the main goal of this section. We can do so using two
basic commands: ip (which is recommended) and ifconfig (which was the previous method in older
versions of Ubuntu, and its usage is no longer recommended).

Chapter 10 205

We can review information regarding our network interfaces and manage them with the ip command.
For example, we can use ip addr show to view our currently assigned IP address:

ip addr show

This will produce an output similar to that shown in the following screenshot:

Figure 10.3: Viewing IP information with the ip addr show command

Once you enter that command, you should see output that pertains to the network interfaces that you
have available and their current status. Also, you can abbreviate the command all the way down to
simply ip a (the output will be the same in either case). From the output, we can see several useful
tidbits, such as the IP address for each device (if it has one), as well as its MAC address.

Using the ip command, we can also manage the state of an interface. We can bring a device down
(prevent it from connecting to networks), and then back up again:

sudo ip link set enp0s3 down
sudo ip link set enp0s3 up

In that example, I’m simply toggling the state for interface enp0s3. First, I’m bringing it down, and
then I’m bringing it back up again.

Bringing interfaces up and down is all well and good, but what’s up with that naming convention? The
convention used in Ubuntu 22.04 may seem a bit strange for those of you that have grown accustomed
to the scheme used in earlier versions, which utilized network interface names such as eth0, wlan0,
and so on. Since Ubuntu is based on Debian, it has adopted the new naming convention that was
introduced starting with Debian 9.0.

The new naming convention has been put in place in order to make interface naming more predictable.
While you may argue that names such as eth0 may be easier to memorize than something like enp0s3,
the change helps the name stay persistent between boots. When you add new network interfaces to a
Linux system, there’s always the possibility that other interface names may change as well.

Connecting to Networks206

For example, if you have an older Linux installation on a server with a single network card (eth0)
and you add a second (which is given the name eth1), your configuration may break if the names
were to get switched during the next boot. Imagine for a moment that one interface is connected
to the internet and another connected to a switch (basically, you have an internet gateway). If the
interfaces came up in the wrong order, internet access would be disrupted for your entire office, due
to the fact that the firewall rules you’ve written are being applied to the wrong interfaces. Definitely
not a pleasant experience!

In the past, previous versions of Ubuntu (as well as Debian, and even CentOS) have opted to use udev
to make the names stick in order to work around this issue. This is no longer necessary nowadays,
but I figured I’d mention it here just in case you end up working on a server with an older installation.
These older servers would achieve stickiness with interface names from configuration stored in the
following file:

/etc/udev/rules.d/70-persistent-net-rules

This file existed on older versions of some popular Linux distributions (including Ubuntu), as a
workaround to this problem. This file contains some information that identifies specific qualities of
the network interface, so that with each boot, it will always come up with the same name. Therefore,
the card you recognize as eth0 will always be eth0. If you have an older version of Ubuntu Server in
use, you should be able to see this file for yourself. Here’s some sample output of this file on an older
installation:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
TTR{address}=="01:22:4e:a5:f2:ec", ATTR{dev_id}=="0x0", ATTR{type}=="1",
KERNEL=="eth*", NAME="eth0"

As you can see, it’s using the MAC address of the card to identify it with eth0. But this becomes a small
problem if I want to take an image of this machine and re-deploy it onto another server. This is a
common practice—we administrators rarely start over from scratch if we don’t have to, and if another
server is similar enough to a new server’s desired purpose, cloning it will be an option. However, when
we restore the image onto another server, the /etc/udev/rules.d/70-persistent-net-rules file will
come along for the ride. We’ll more than likely find that the new server’s first network interface will
have a designation of eth1, even if we only have one interface.

This is because the file already designated a device as eth0 (it’s referencing a device that’s not present
in the system), so we would need to correct this file ourselves in order to reclaim eth0. We would do
that by editing the rules file, deleting the line that contains the card that’s not on the system, and
then changing the device designation on the remaining line back to eth0.

The new naming scheme is effective as of systemd v197 and later (in case you didn’t already know
from earlier topics in this book, systemd is the underlying framework utilized in Ubuntu for managing
processes and various resources). For the most part, the new naming convention references the
physical location of the network card on your system’s bus.

Chapter 10 207

Therefore, the name it receives cannot change unless you were to actually remove the network card
and place it in a different slot on the system’s board, or change the position of the virtual network
device in your hypervisor.

As a quick overview of how the network names break down, en is for Ethernet, and wl is for wireless.
Therefore, we know that the example interface I mentioned earlier (enp0s3) references a wired card.
The p references which bus is being used, so p0 refers to the system’s first PCI bus (the numbering
starts at 0). Next, we have s3, which references PCI slot 3. Putting it together, enp0s3 references a
wired network interface card on the system’s first bus, placed in PCI slot 3. The exact details of the
new naming specification could even be a chapter of its own, but hopefully this gives you a general
idea of how the new naming convention breaks down. There’s much more documentation online if
you’re interested in the nitty-gritty details (see the Further reading section). The important point here
is that since the new naming scheme is based on where the card is physically located, it’s much less
likely to change abruptly. In fact, it can’t change, as long as you don’t physically switch the positions
of your network cards inside the case.

Getting back to managing our interfaces, another command worth discussion is ifconfig.

The ifconfig command is part of the net-tools suite of utilities, which has been deprecated (for the
most part). Its replacement is the iproute2 suite of utilities, which includes the ip command we’ve
already discussed. In summary, this basically means you should be using commands from the iproute2
suite, instead of commands such as ifconfig. The problem, though, is that most administrators
nowadays still use ifconfig, with no sign of it slowing down. In fact, the net-tools suite has been
recommended for deprecation for years now, and many Linux distributions shipping today still have
this suite installed by default. Those that don’t have it installed offer it as an additional package that
you can install. In the case of Ubuntu Server 22.04, the net-tools package is no longer installed by
default, but it’s still available if you want to manually install it. I don’t recommend installing it though,
since it’s deprecated and shouldn’t be used anymore.

The reason commands such as ifconfig have a tendency to stick around so long after they’ve been
deprecated usually comes down to the change is hard mentality, but quite a few scripts and programs
out there are still using ifconfig, and therefore it’s worth discussing here. Even if you immediately
stop using ifconfig, and move to ip from now on, you’ll still encounter this command on your travels,
so you may as well know a few examples. Knowing the older commands will also help you if you find
yourself on an older server.

First, when executed by itself with no options, ifconfig will print information regarding your interfaces
like we did with ip addr show earlier. That seems pretty simple.

If you are unable to use ifconfig to view interface information using a normal user, try using the
fully qualified command (include the full path):

/usr/sbin/ifconfig

Connecting to Networks208

The /usr/sbin directory may or may not be in your $PATH (a set of directories your shell looks within
for commands), so if your system doesn’t recognize ifconfig, using the fully qualified command
should produce the desired output, as follows:

Figure 10.4: Viewing interface information with the ifconfig command

Secondly, just like with the ip commands we practiced earlier, we can also bring an interface down
or up with ifconfig as well:

sudo ifconfig enp0s3 down
sudo ifconfig enp0s3 up

There are, of course, other options and variations of ip and ifconfig, so feel free to look up the man
pages for either if you want more information. For the purposes of this section, the main thing is to
remember how to view your current IP assignments, as well as how to bring an interface up or down.

Chapter 10 209

As useful as our network interfaces can be, they’re useless without an IP address assigned to them.
While a network will often use DHCP to take care of this, in the next section we’ll take a look at how
to assign a static IP address.

Assigning static IP addresses
With servers, it’s very important that your IP addresses remain fixed and do not change for any reason.
If an IP address does change (such as a dynamic lease with no reservation), your users will experience
an outage, services will fail, or entire sites may become unavailable. When you install Ubuntu Server,
it will grab a dynamically assigned lease from your DHCP server, but after you configure the server
the way you want it, it’s important to set a permanent IP address right away before it’s considered
production-ready. One exception to this rule is an Ubuntu-based VPS. Cloud providers that bill you for
these servers will have an automatic system in place to declare an IP address for your new VPS, and
will already have it configured to remain in place. But in the case of virtual or physical servers you
manage yourself, you’ll start off with a dynamic address, unless you’ve already configured a static IP
address during installation.

In most cases, you’ll have an IP address scheme in place at your office or organization, which will
outline a range of IP addresses that are available for use with static assignments. If you don’t have
such a scheme, it’s important to create one, so you will have less work to do later when you bring more
servers online. We’ll talk about setting up a DHCP server and IP address scheme in Chapter 11, Setting
Up Network Services, but for now, I’ll give you a few quick tips. Your DHCP server will typically have a
range of IP addresses that will be automatically assigned to any host that requests an assignment. When
setting up a static IP on a server, you’ll want to make sure that the IP address that you choose is outside
of the range that your DHCP server assigns so you don’t end up with a duplicate IP on your network.
For example, if your DHCP server assigns IPs ranging from 10.10.10.100 through 10.10.10.150,
you’ll want to use an IP address not included within that range for your servers.

There are two ways of assigning a fixed address to a network host, including your servers. The first is
by using a static IP assignment, as I’ve already mentioned. With that method, you’ll arbitrarily grab
an IP address that’s not being used by anything, and then configure your Ubuntu Server to use that
address. In that case, your server is never requesting an IP address from your network’s DHCP server.
It simply uses whatever you assign it. This is the method I’ll be going over in this section.

The other way of assigning a fixed address to a server is by using a static lease. This is also known as
a DHCP reservation, but I prefer to use the former term. With this method, you configure your DHCP
server to assign a specific IP address to specific hosts. In other words, your server will request an IP
address from your local DHCP server, and your DHCP server is instructed to give a specific address to
your server each time it asks for one. This is the method I prefer, because it makes your DHCP server
the single source of truth for the IP addresses that are assigned on your network. I’ll go over it in more
detail in Chapter 11, Setting Up Network Services.

However, you don’t always have a choice. As a Linux administrator, you may or may not be in charge
of the DHCP server. It’s often the case at many organizations that administrators that manage servers
are not the same individuals that also manage the network.

Connecting to Networks210

If you don’t have authority over the design of the network, you’d use an IP address that would be
provided to you by your network administrator, and then you’ll proceed to configure your Ubuntu
Server to use it by applying the parameters they give you.

Within the last several years, the method that we utilize to customize the IP address of our servers
has changed from the way it was handled in the past. Since Ubuntu 17.10, which was released back in
2017, configuring your IP address settings is now done via Netplan. In the past, we would configure
networking via NetworkManager, but that’s installed only by default in Ubuntu Desktop. With Netplan,
configuration files for your network interfaces now reside in the /etc/netplan directory, in YAML
format. Explaining the YAML format itself is beyond the scope of this book, but the syntax is very
easy to follow so you don’t really need to thoroughly understand this format in order to configure
your network interfaces. If you list the contents of the /etc/netplan directory, you should see at
least one file there, often named 00-installer-config.yaml or 50-cloud-init.yaml. It’s possible
the file could be saved with a different name, so check the contents of the /etc/netplan directory
to see what the file is named on your end. On one of my servers, I see the following contents in the /
etc/netplan/00-installer-config.yaml file:

This is the network config written by 'subiquity'
network:
 ethernets:
 enp0s3:
 dhcp4: true
 version: 2

We can already glean some obvious information from this default file. First, the comment at the
beginning mentions subiquity, which is the official name of the Ubuntu Server installer, used when
you install the distribution from boot media created from the ISO file.

More importantly, we can see that this particular server is configured to utilize DHCP in order to grab
an IP address, which we can tell from the following line:

 dhcp4: true

We can also tell that this configuration file pertains to interface enp0s3. Putting it all together, this
file is telling us that interface enp0s3 is configured to automatically obtain an IP address via DHCP. If
we’d like to convert this configuration to a static IP address instead, we should first back up the file:

sudo cp /etc/netplan/00-installer-config.yaml /etc/netplan/00-installer-config.
yaml.bak

This way, if we make a mistake, we can easily restore the original file by renaming the backup file to
the original name. This is a good practice to get into, regardless of the file we’re editing. Being able to
restore a previous configuration is a best practice for just about any change we might be making. The
first change we need to make is to remove the following line (or just change it to false):

 dhcp4: true

Chapter 10 211

Essentially, to set up a static IP we will replace that line with the details specific to our configuration.
Here’s an example of the file, configured for a static IP address:

This is the network config written by 'subiquity'
network:
 ethernets:
 enp0s3:
 addresses: [192.168.100.50/24]
 gateway4: 192.168.100.1
 nameservers:
 addresses: [192.168.100.1, 192.168.100.2]
 version: 2

In the example, I’ve bolded four lines, which were added in place of the dhcp4: true line. First, we
set the actual IP address:

 addresses: [192.168.100.50/24]

There, I’ve used an example IP address of 192.168.100.50/24. On your end, you would make sure that
the IP address you choose is within the scope of the network you’d like your server to be a part of. As I
mentioned earlier, the IP address you choose should not be within the DHCP scope that automatically
assigned IP addresses are chosen from. The preceding IP address would be fine if the example scope
of the DHCP server on your network ranged from 192.168.100.100 to 192.168.100.150. The IP
chosen here of 192.168.100.50 is outside of that, so we don’t have to worry about another device
being assigned that address.

We also include /24 to declare that the IP address is part of a 24-bit subnet, which is fairly standard
unless your network administrator has set up a larger scope. An /24 network is the same as a Class C
network, in case that’s more familiar to you. This also takes care of the subnet mask, which we don’t
need here since /24 implies the same subnet mask as 255.255.255.0 (if you’re more familiar with
the classful style, which shows the subnet mask in the same format as an IP address). We will discuss
subnets in Chapter 11, Setting Up Network Services; however, a full walk-through of subnetting and the
TCP/IP protocol would be more fitting for a book dedicated to networking concepts, so we won’t go
anymore into detail than necessary.

Moving on, we also set up the gateway:

 gateway4: 192.168.100.1

When it comes to networking, the gateway refers to the device your outbound connections are routed
through, which will often be a router or firewall, depending on how your network is set up. This value
will need to match the actual default gateway address on your network, which is quite often the same
as the IP address with the last portion being .1. If in doubt, you can check the IP address assignment
of another device on the same network you’re joining the Ubuntu server to, which would be the same.

Connecting to Networks212

The last section allows us to configure the DNS server that our server will use to look up external
domain names:

 nameservers:
 addresses: [192.168.100.1, 192.168.100.2]

The example configuration is just that, an example—all the values must match whatever is appropriate
for your network. Often, the DNS server IP address will be the same as the gateway address, but that’s
not always true. Sometimes a network administrator will have a custom IP scheme for DNS servers. I
also added a secondary DNS server in the example, 192.168.100.2, but you can remove the second
IP address if that’s not necessary.

Once you’ve ensured that the values in the file are appropriate, we’ll need to apply and test these
changes:

•	 If you are using a virtual machine, you may want to make the changes from the virtual machine
console

•	 If you’re updating a physical machine, you may want to have a display and keyboard attached
•	 Although we discuss OpenSSH later in this chapter, if you’re already aware of how to connect to

a server via OpenSSH, you probably won’t want to change network configuration over OpenSSH,
since as soon as you activate these changes your connection will drop

Just take your time and double-check everything to ensure you didn’t mistype anything, so you won’t
find yourself with a server that cannot connect.

To actually make these changes take effect, you can run the following command:

sudo netplan apply

When you run the previous command, it will let you know if there are any errors in the file or apply
the changes if not. The new IP address will take effect immediately.

In the case of utilizing remote connections such as OpenSSH while configuring networking, you can
work around the issue of being disconnected and having networking not restart properly by using
tmux, a popular terminal multiplexer. A full run-through of tmux is beyond the scope of this book, but
it is helpful to us in this scenario because it keeps commands running in the background, even if our
connection to the server gets dropped. To use it, first install the package:

sudo apt install tmux

Then, activate tmux by simply typing tmux in your shell prompt.

From this point on, tmux is now responsible for your session. If you run a command within tmux, it
will continue to run, regardless of whether or not you’re attached to it. To see this in action, first enter
tmux and then execute the top command. While top is running, disconnect from tmux. To do that,
press Ctrl + b on your keyboard, release, and then press d. You’ll exit tmux, but if you enter the tmux a
command to reattach your session, you’ll see that top was still running even though you disconnected.
Following this same logic, you can activate tmux prior to executing the sudo netplan apply command.

Chapter 10 213

Most likely, you’ll still get dropped from your shell, since the process of activating network changes
brings the network interface down and then back up again, but with tmux the command will complete
in the background. You can then reconnect to the server and run tmux a to rejoin your tmux session.

The tmux utility is extremely powerful, and when harnessed can really enhance your workflow
when using the Linux shell. Although a complete tutorial is outside the scope of this book, I highly
recommend looking into using it, which you can do here: https://www.packtpub.com/hardware-
and-creative/getting-started-tmux. If you need some guidance with it, check out the video guide
on LearnLinuxTV that will be linked at the end of this chapter.

With networking restarted, you should be able to immediately reconnect to the server and see that
the new IP assignment has taken place by executing ip a. If, for some reason, you cannot reconnect
to the server, you may have made a mistake while editing the configuration file for Netplan. Double-
check that file for any errors. But as long as you’ve followed along and typed in the proper values for
your interface and network, you should be up and running with a static IP assignment.

Now, we have an actual network—we’ve named our server(s) and configured our network interfaces.
We should also understand how name resolution works in Ubuntu, which is the process in which
servers are able to find other servers by their name.

Understanding Linux name resolution
In Chapter 11, Setting Up Network Services, we’ll have a discussion on setting up a DNS server for local
name resolution for your network. But before we get to that, it’s also important to understand how
Linux resolves names in the first place. Most of you are probably aware of the concept of a Domain
Name System (DNS), which matches human-understandable domain names to IP addresses. This
makes browsing your network (as well as the internet) much easier. However, a DNS isn’t always the
first thing that your Linux server will use when resolving names.

For more information on the order in which Ubuntu Server checks resources to resolve names, feel
free to take a look at the /etc/nsswitch.conf file. There’s a line in this file that begins with the word
hosts. Here is the output of the relevant line from the file on my server:

hosts: files mdns4_minimal [NOTFOUND=return] dns mymachines

In this case, the server is configured to first check local files, and then the DNS if the request isn’t
found. This is the default order, and I see little reason to make any changes here (but you certainly
can). Specifically, the file the server will check is /etc/hosts. If it doesn’t find what it needs there, it
will move on to the DNS (basically, it will check the DNS server we configured earlier with Netplan,
or the default server provided by DHCP).

There are many other lines in the nsswitch.conf file, but I won’t discuss them here as they are out
of scope of the topic of this section.

The /etc/hosts file, which we briefly discussed while working with our hostname, tells our server
how to resolve itself (it has a hostname mapping to the localhost IP of 127.0.0.1), but you are also
able to create additional names to IP mappings here as well.

https://www.packtpub.com/hardware-and-creative/getting-started-tmux
https://www.packtpub.com/hardware-and-creative/getting-started-tmux

Connecting to Networks214

For example, if I had a server (myserver.mydomain.org) at IP 10.10.96.124, I could add the following
line to /etc/hosts to make my machine resolve the server to that IP each time, without it needing to
consult a DNS server at all:

10.10.96.124 myserver.mydomain.org

In practice though, this is usually not a very convenient method by which to configure name resolution.
Don’t get me wrong, you can certainly list your servers in this file along with their IP addresses, and
your server would be able to resolve those names just fine. The problem stems from the fact that
this method is difficult to maintain. The name mappings apply only to the server you’ve made the /
etc/hosts changes on; other servers wouldn’t benefit since they would only check their own /etc/
hosts file. You could add a list of servers to the hosts file on each of your servers, but that would be a
pain to manage. This is the main reason why having a central DNS server is a benefit to any network,
especially for resolving the names of local resources.

However, the /etc/hosts file is used every now and again in the enterprise as a quick one-off
workaround, and you’ll probably eventually end up needing to use this method for one reason or
another. One very common reason to use such a manual method of resolving names is in the case
where you’re testing a replacement server. In that case, you can configure the /etc/hosts file to have
the same name as the original server, but with the IP address of the new server. Once you finish testing
and confirm that the new server is operating properly, you can then replace the network-wide DNS
name to point to the new IP address.

On legacy Ubuntu servers, the /etc/resolv.conf file included the IP addresses for DNS servers the
system would use to resolve names. If you wanted to override the DNS servers for your server, you
would alter that file. Although this file still exists in Ubuntu 22.04, it only exists to redirect lookups
to systemd-resolved, which is a systemd unit that runs in the background and applies DNS settings
based on what the system receives via DHCP or what you may have configured in Netplan. For the
sake of completeness though, here is a brief overview of the syntax of this file in older releases, in
case you end up working on such a server. An example of this file is as follows:

nameserver 10.10.96.1
nameserver 10.10.96.2

In this example, the /etc/resolv.conf output is utilizing servers 10.10.96.1 and 10.10.96.2.
Therefore, the server will first check /etc/hosts for a match of the resource you’re looking up, and if
it doesn’t find it, it will then check /etc/resolv.conf in order to find out which server to check next.
In this case, the server will check 10.10.96.1.

The /etc/resolv.conf file on legacy servers is typically not one that you’d make actual changes to,
since it’s automatically generated by NetworkManager. NetworkManager is a service that helps you
manage your network interfaces; however, it’s not used anymore with Ubuntu Server for a handful of
releases now. Even though you don’t typically manually edit the /etc/resolv.conf file, it may be worth
looking at on legacy servers to see which DNS servers were assigned, in case you’re troubleshooting
some sort of networking issue.

Chapter 10 215

Nowadays, modern Ubuntu servers utilize systemd-resolved to handle name resolution. If you’d like to
see which DNS servers were assigned on a newer Ubuntu Server installation, you can simply look at the
configuration file for Netplan that we worked through earlier in the case of a static IP assignment, but
if DHCP is being used, the resolvectl command will let you know what DNS nameservers your server
is currently pointing to. This will provide an output similar to that shown in the following screenshot:

Figure 10.5: Viewing a server’s current DNS assignment

In a typical enterprise Linux network, you’ll set up a local DNS server to resolve your internal resources,
which will then forward requests to a public DNS server in case you’re attempting to reach something
that’s not internal. We’ll get to that in Chapter 11, Setting Up Network Services, but you should now
understand how the name resolution process works on your Ubuntu Server.

As Linux administrators, we will likely manage a large number of servers, and often the server we’re
managing may not even be in the same physical location as us. OpenSSH is a powerful tool for remote
management, and it’s what we’ll explore next.

Getting started with OpenSSH
OpenSSH is quite possibly the most useful tool in existence for managing Linux servers. Of all the
countless utilities available, this is the one I recommend that everyone starts practicing as soon as they
can. Technically, I could probably better fit a section for setting up OpenSSH in Chapter 11, Setting Up
Network Services, but this utility is very handy, and we should start using it as soon as possible.

OpenSSH allows you to open a command shell on other Linux servers, enabling you to run commands
as if you were there in front of the server. For Linux administrators like us, this is extremely convenient.
We could be tasked with managing dozens, hundreds, or even thousands of servers.

Connecting to Networks216

With OpenSSH, we can manage our entire server architecture without even getting out of our chairs.
In this section, I’ll give you some information on OpenSSH and how to install it, and then I’ll finish
up the section with a few examples of actually using it.

Installing OpenSSH
OpenSSH consists of two components, the server daemon that runs in the background that accepts
SSH connections, and the client that runs on a laptop, workstation, or another server that gives you
the ability to connect to an SSH server and run commands. All operating systems nowadays give you
access to an OpenSSH client that you can use to make the connection to the server, so that requirement
is probably already met. When it comes to Linux, most distributions give you the OpenSSH client
already. You can verify that by running which ssh at your shell prompt. If you have the client installed,
your output should read /usr/bin/ssh.

If, for some reason, you don’t have this package installed and you’ve received no output from the
previous command (which would be rare), you can install the OpenSSH client with the following
command:

sudo apt install openssh-client

Depending on the choices you’ve made during installation, your Ubuntu Server likely has the OpenSSH
server installed already. If you don’t remember whether or not you opted to have this included during
our initial installation, you can run the which sshd command at your shell prompt and you should see
the output of /usr/sbin/sshd. You can also execute systemctl status ssh as well, and if the server
component is present and running, then your server is ready to accept SSH connections:

Figure 10.6: Verifying that the OpenSSH service is running on a server

In the case that you don’t have the OpenSSH server component installed on your server, you can install
it with the following command:

sudo apt install openssh-server

Chapter 10 217

With great power comes great responsibility, though. As great as OpenSSH is, any service that listens
for connections has the potential of being abused. An outside intruder finding a weakness or exploit
that allows them to take control over your server is a really bad situation. Therefore, like any service
that runs on your server, you should only have it running if you need to use it. Since OpenSSH is
incredibly helpful (and it’s the standard method of remote management) it’s very hard to not use it.

There are many methods you can utilize to secure such a service and help protect it. One method
is covered in the next section, and we’ll talk about security pertaining to OpenSSH again before the
book comes to a close. Specifically, in Chapter 21, Securing Your Server, I will walk you through various
configuration changes you can make to help minimize the threat of miscreants breaking into your
server from the outside and wreaking havoc.

Securing OpenSSH is actually not hard at all, and would probably only take a few minutes of your
time. Therefore, feel free to make a detour to that chapter to read the section there that talks about
securing OpenSSH, and then come back here when you’re done. For now, make sure that you have
secure, randomly generated passwords on the server at the very least. If OpenSSH is reachable via
the public internet, and any of your users have weak passwords, it definitely won’t be a fun situation.

With all of that out of the way, we can get started with actually using OpenSSH.

Issuing commands with OpenSSH
After you’ve installed the openssh-server package on your target machine (the one you want to control
remotely), you’ll need to start it if it hasn’t been already. By default, Ubuntu’s openssh-server package
is automatically configured to start and become enabled once installed. Just as we’ve done earlier, you
can verify that the required service is running with the following command:

systemctl status ssh

If OpenSSH is running as a daemon on your server, you should see output that tells you that it’s active
(running). If not, you can start it with the following command:

sudo systemctl start ssh

If the output of the systemctl status ssh command shows that the daemon is disabled (meaning it
doesn’t start up automatically when the server boots), you can enable it with the following command:

sudo systemctl enable ssh

With the OpenSSH server started and running, your server should now be listening for connections.
To verify this, use the following command to list listening ports, restricting the output to SSH:

sudo ss -tunlp |grep ssh

The ss command allows us to view a list of processes running on our server that are listening for
connections. It will also display which port a process is listening on.

Connecting to Networks218

We’ll explore this command in more detail in Chapter 21, Securing Your Server. But for now, this command
should produce an output similar to the following:

Figure 10.7: Checking if the required port for SSH is listening

If, for some reason, your server doesn’t show that it has an SSH server listening, double-check that
you’ve started the daemon. By default, the SSH server listens for connections on port 22. This can be
changed by modifying the port declaration in the /etc/ssh/sshd_config file, but that’s a story for
a later chapter. While I won’t be going over the editing of this file just yet, just take note that it’s the
default configuration file for the daemon. OpenSSH reads this file for configuration values each time
it’s started or restarted.

To connect to a server using SSH, simply execute the ssh command followed by the name or IP address
of the server you’d like to connect to:

ssh 192.168.1.120

By default, the ssh command will use the username you’re currently logged in with for the connection.
If you’d like to use a different username, specify it with the ssh command by including your username
followed by the @ symbol just before the IP address or hostname:

ssh fmulder@192.168.1.120

Unless you tell it otherwise, the ssh command assumes that your target is listening on port 22. If it
isn’t, you can give the command a different port with the -p option followed by a port number:

ssh -p 2242 fmulder@192.168.1.120

Once you’re connected to the target machine, you’ll be able to run shell commands and administer
the system as if you were right in front of it. You’ll have all the same permissions as the user you’ve
logged in with, and you’ll also be able to use sudo to run administrative commands if you normally
have access to do so on that server.

Chapter 10 219

Basically, anything you’re able to do if you were standing right in front of the server, you’ll be able to
do via SSH. When you’re finished with your session, simply type exit at the shell prompt, or press
Ctrl + d on your keyboard.

When you exit an OpenSSH connection, any processes you may have had running in the background
will be killed. Be sure you resume any background processes you may have running and finish working
with them before you exit your connection. We took a look at how to run processes in the background
back in Chapter 7, Controlling and Monitoring Processes.

As you can see, OpenSSH is a miraculous tool that will benefit you by allowing you to remotely manage
your servers from anywhere you allow SSH access from. Make sure to read the relevant section in
Chapter 11, Setting Up Network Services, with regard to securing it, though. In the next section, we’ll
discuss SSH key management, which brings the benefit of convenience, but also allows you to increase
security as well.

Getting started with SSH key management
When you connect to a host via SSH, you’ll be asked for your password, and after you authenticate
you’ll be connected. Instead of using your password, though, you can authenticate via public key
authentication instead. The core benefit to this method is added security, as your system password is
never transmitted during the process of connecting to the server. When you create an SSH key pair,
you are generating two files, a public key and a private key. These two files are mathematically linked,
so if you connect to a server that has your public key, it will know it’s you because you (and only you)
have the private key that matches it. This method is far more secure than password authentication,
and I highly recommend that you use it. To get the most out of the security benefit of authentication
via keys, you can actually disable password-based authentication on your server so that your SSH key
is your only way in. By disabling password-based authentication and using only keys, you’re increasing
your server’s security by a sizeable margin. We’ll go over that in Chapter 21, Securing Your Server.

Connecting to Networks220

Generating public and private keys
To get started, you’ll first need to generate your key. To do so, on your workstation or laptop (the device
you’re using to connect to the server), use the ssh-keygen command as your normal user account.
The following screenshot shows what this process generally looks like:

Figure 10.8: Generating an SSH key pair

First, you’ll be asked for the directory in which to save your key files, defaulting to /home/<user>/.
ssh. You’ll next be asked for a passphrase, which is optional. Although it does add an additional step
to authenticating via keys, I recommend that you give it a passphrase (which should be different than
your system password) since it greatly enhances security (the key would be unusable without the
passphrase, if you gave it one). You can press Enter for the passphrase without entering one if you do
not want this.

What this command does is create a directory named .ssh in your home directory, if it doesn’t already
exist. Inside that directory, it will create two files, id_rsa and id_rsa.pub. The id_rsa file is your
private key. It should never leave your machine, be given to another user, or be stored on any external
media. If your private key leaks out, your keys can no longer be trusted. By default, the private key is
owned by the user that created it, with rw permissions given only to its owner.

Chapter 10 221

The public key, on the other hand, can leave your computer and doesn’t need to be secured as much.
Its permissions are more lenient, being readable by everyone and writeable by the owner. You can
see this yourself by executing ls -l /home/<user>/.ssh:

Figure 10.9: Listing the contents of the .ssh directory, showing the permissions of the newly created
keys

The public key is the key that actually gets copied to other servers to facilitate your being able to log
in via such a key pair. When you log in to a server that has your key, it checks that it’s a mathematical
match to your private key, and if it is, it will let you log in. You’ll also be asked for your passphrase, if
you chose to set one when you first created it. But before we can actually use our key, we need to copy
it over to the server we intend to connect to.

Copying your public key to a remote server
To actually transmit your public key to a target server, we can use the ssh-copy-id command, as I’m
doing in the following example command:

ssh-copy-id -i ~/.ssh/id_rsa.pub 192.168.1.150

With that command, replace the IP address with the actual IP address, or with the hostname of the
target server. You’ll be asked to log in via your password first, and then your key will be copied over.
From that point on, you’ll log in via your key, falling back to being asked for your password if, for
some reason, your key relationship is broken. Here’s an example of what this process looks like, if
I were to work through the process of copying my key to a server named myserver.mycompany.org:

Figure 10.10: Using the ssh-copy-id command to copy a public key to a server

Connecting to Networks222

So, what exactly did the ssh-copy-id command do? Where is your public key copied to, exactly?
What happens with this command is that on the target server, a .ssh directory is created in your home
directory on the target server if it didn’t already exist. Inside that directory, a file named authorized_
keys is created if it wasn’t already present. The contents of ~/.ssh/id_rsa.pub on your machine are
copied into the ~/.ssh/authorized_keys file on the target server. With each additional key you add
(for example, you connect to that server from multiple machines), the key is added to the end of the
authorized_keys file, one per line.

Using the ssh-copy-id command is merely a matter of convenience; there’s nothing stopping you
from copying the contents of your id_rsa.pub file and manually pasting it into the authorized_keys
file of the target server. That method will actually work just fine as well.

When you connect to a server that you have set up a key relationship with by adding your public key,
SSH checks the contents of the ~/.ssh/authorized_keys file on that server, looking for a key that
mathematically matches the private key (~/.ssh/id_rsa) on your machine. If the two keys are an
appropriate match, you are allowed access. If you set up a passphrase, you’ll be asked to enter it in
order to open your public key.

If you decided not to create a passphrase with your key, you’re essentially setting up authentication
without a password, meaning you won’t be asked to enter anything when authenticating.

Utilizing an SSH agent
When we created our SSH key earlier, it was mentioned that having a passphrase is optional but is a
good idea. Using passphrases with OpenSSH key pairs boosts their security. If an OpenSSH key falls into
the wrong hands, it will be useless if the person attempting to utilize it doesn’t know the passphrase.
However, we lose a bit of convenience because we need to enter the passphrase for a key each time
we want to use it. An OpenSSH key without a passphrase will allow us to connect to a server and be
logged in without entering anything at all. With an SSH agent, you can actually cache your passphrase
the first time you use it, so you won’t be asked for it with every connection. This essentially allows you
to benefit from the added security of a passphrase, and still maintain at least some convenience. Best
of all, if your laptop or desktop is able to utilize the OpenSSH client for connecting to remote systems,
you should have an SSH agent on your system already. If we’re using a flavor of Linux or macOS on
our workstation or laptop, for example, we will have the ssh-agent command available to us.

The ssh-agent is used by starting it in the background in our terminal. We can then “unlock” our keys
with our passphrase, and then the unlocked key will be stored in memory and will be automatically
used when we attempt to connect to a server we’ve copied our public key to. To start it, enter the
following command as your normal user account on the machine you’re starting your connections
from (that is, your workstation):

eval $(ssh-agent)

This command will start an SSH agent, which will continue to run in the background of your shell.
But it’s not adding any value to us yet—so we will need to add an SSH key to the now-running agent.
The ssh-add command allows us to add an SSH key to our running ssh-agent. To do so, we can give
the ssh-add command the path to our public key as an argument:

Chapter 10 223

ssh-add ~/.ssh/id_rsa

At this point, you’ll be asked for your passphrase. As long as you enter it properly, your key will remain
open and you won’t need to enter it again for future connections, until you close that shell or log out.
Now that you have the ssh-agent running in the background with your unlocked key, utilizing a key
with a passphrase becomes much easier and you’ll end up typing a lot less.

Changing the passphrase of an OpenSSH key
At some point, you may want to change the passphrase associated with a key. If you’d like to do that,
you can use the -p argument with the ssh-keygen command. That same argument can also be used
if you didn’t choose to add a passphrase when you initially created the key. That’s all there is to it. The
command you’d enter to add or change a passphrase is as simple as the following:

ssh-keygen -p

Once you enter that command, press Enter to accept the default file (id_rsa) unless the key you want
to alter is under a different name, in which case you can type the path to, and the name of, that key.
Then, you’ll be asked for your current passphrase (leave it blank if you don’t have one yet) followed
by your new passphrase twice. The process looks like this:

Figure 10.11: Changing an SSH passphrase

These concepts may take a bit of practice if you’ve never used SSH before. The best way to practice is
to set up multiple Ubuntu Server installations (perhaps several virtual machines), and practice using
SSH to connect to them, as well as deploying your key to each machine via the ssh-copy-id command.
It’s actually quite easy once you get the hang of it.

Simplifying SSH connections with a config file
Before we leave the topic of OpenSSH, there’s another trick that has the benefit of convenience, and
that is the creation of a local configuration file for SSH. This file must be stored in the .ssh directory
of your home directory, and be named config. The full path for this file in my case looks like this:

/home/jay/.ssh/config

Connecting to Networks224

This file doesn’t exist by default, but if it’s found, SSH will parse it whenever you use the client and
you’ll be able to benefit from it. Go ahead and open this file in your text editor, such as nano:

nano /home/your_username/.ssh/config

This config file allows you to type configuration for servers that you connect to often, which can
simplify the ssh command automatically. The following are example contents from such a file that
will help me illustrate what it does:

host myserver
 Hostname 192.168.1.23
 Port 22
 User jdoe

Host nagios
 Hostname nagios.mynetwork.org
 Port 2222
 User nagiosuser

In the example contents, I have two hosts outlined, myserver and nagios. For each, I’ve identified a
way to reach it by name or IP address (the Hostname line), as well as the Port and User account to use
for the connection. If I use ssh to connect to either Host by the name I outlined in this file, it will use
the values I have stored there, for example:

ssh nagios

That command is a lot shorter than if I set all the options manually. Considering I have a config file
for SSH, that command is essentially the same as if I identified the connection details manually, which
would’ve been the following:

ssh -p 2222 nagiosuser@nagios.mynetwork.org

I’m sure you can see how much simpler it is to type the first command than the second. With the
config file for SSH, I can have some of those details automatically applied. Since I’ve outlined that my
nagios server is located at nagios.mynetwork.org, its SSH user is nagiosuser, and it’s listening on
port 2222, it will automatically use those values even though I only typed ssh nagios. Furthermore,
you can also override this entry as well. If you provide a different username when you use the ssh
command, it will use that instead of what you have written in the config file.

In the first example (for the myserver server), I’m providing an IP address for the connection, rather
than a hostname. This is useful in a situation where you may not have a DNS entry for your target
server. With this example, I don’t have to remember that the IP address for myserver is 192.168.1.23.
I simply execute ssh myserver and it’s taken care of for me.

Chapter 10 225

The names of each server within the config file are arbitrary and don’t have to match the target server’s
hostname. I could’ve named the first server potato and it would still have routed me to 192.168.1.23,
so I can create any sort of named shortcut I want, whatever I find is most convenient for me and
easiest to remember. As you can see, maintaining a config file in your home directory containing
your most commonly used SSH connections will certainly help keep you organized and allow you to
connect more easily.

Summary
In this chapter, we worked through several examples of connecting to other networks. We started off
by configuring our hostname, managing network interfaces, assigning static IP addresses, as well as
looking at how name resolution works in Linux. A decent portion of this chapter was dedicated to
topics regarding OpenSSH, which is an extremely useful utility that allows you to remotely manage
your servers. We’ll revisit OpenSSH in Chapter 21, Securing Your Server, with a look at boosting its
security. Overall, we’ve only begun to scratch the surface of this tool. Entire books have been written
about SSH, but the examples in this chapter should be enough to make you productive with it. The
name of the game is to practice, practice, practice!

In the next chapter, we’ll talk about managing software packages. We’ll work through adding and
removing them, adding additional repositories, and more!

Relevant videos
•	 OpenSSH Guide (LearnLinuxTV): https://linux.video/ssh-guide
•	 tmux Guide (LearnLinuxTV): https://linux.video/tmux-guide
•	 The OpenSSH Client Config File (LearnLinuxTV): https://linux.video/ssh-config-file
•	 Getting Started with OpenSSH Key Management (LearnLinuxTV):

https://linux.video/ssh-key-mgmt

Further reading
•	 Netplan FAQ: https://learnlinux.link/npf
•	 Ubuntu SSH key documentation: https://learnlinux.link/u-ssh-keys
•	 NetworkInterfaceNames (from Debian’s wiki): https://learnlinux.link/net-int-nam

https://linux.video/ssh-guide
https://linux.video/tmux-guide
https://linux.video/ssh-config-file
https://linux.video/ssh-key-mgmt
https://learnlinux.link/npf
https://learnlinux.link/u-ssh-keys
https://learnlinux.link/net-int-nam

Connecting to Networks226

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

11
Setting Up Network Services

In Chapter 10, Connecting to Networks, we went over some important foundational topics related to
networking. We saw how to set the hostname, manage network interfaces, configure connections,
and more. In this chapter, we’ll revisit networking, specifically to set up the resources that will serve
as the foundation of our network. The majority of this chapter will focus on setting up the DHCP and
DNS servers, which are very important components of any network. In addition, we’ll even take a look
at setting up a server to act as an internet gateway for the rest of our network.

Along the way, we’ll cover the following topics:

•	 Planning your IP address scheme
•	 Serving IP addresses with isc-dhcp-server
•	 Setting up DNS with bind
•	 Setting up an internet gateway

As a Linux administrator, you may or may not be tasked with designing the entire network layout of
your organization; often there will be an already-existing network to manage. In the next section, we’ll
discuss creating such a layout, even if only to understand what goes into such a plan.

Planning your IP address scheme
Designing the overall layout of your network is an incredibly important process that sets the stage
for success or failure later on. This design must take into consideration the needs of the organization,
the need for efficient methods of communication, and the segregation of network services to ensure
that your servers can only communicate with the resources that they are supposed to. As a Linux
administrator that manages a fleet of Ubuntu servers, it’s not always the case that you’ll even have
a say in the network layout at all. It’s quite common that you “inherit” a network designed by a
previous administrator, or your job is siloed such that you only manage the servers and someone else
is responsible for the network.

Setting Up Network Services228

Since this is primarily a book that focuses on teaching you how to manage Ubuntu servers, we aren’t
going to cover all of the things that a network administrator would need to know, but there’s a bit
of overlap between the two roles. As a Linux administrator, you may or may not be tasked with the
designing of your network, but at a minimum, you do need to understand the overall layout and how
your servers will fit within it.

In this section, we’ll discuss the most important part of a network layout—the IP address scheme.
Planning the IP scheme is an important task that sets the foundation for many other things. Even if
it’s not up to you to design this layout, knowing the finer details of an existing layout can help you
better understand how servers you maintain might communicate with other devices. Planning your IP
layout involves estimating how many devices will need to connect to your network and being able to
support them. In addition, a good plan will account for potential growth and allow expansion as well.
The main thing that factors into this is the size of your user base. Perhaps you are working in a small
office with only a handful of people, or a large corporation with thousands of users and hundreds of
virtual machines. Even if your organization is only a small office, I always recommend making the
assumption that your company will explode in popularity someday and designing your network to
have the growth potential to accommodate that.

Typically, most off-the-shelf routers and network equipment come with an integrated Dynamic Host
Control Protocol (DHCP) server, with a default class C (/24) network. Essentially, this means that if
you do not perform any configuration at all, you’re limited to 254 addresses. For a small office, this
may seem like plenty. After all, if you don’t even have 254 employees at your company, that number
may seem like overkill. As I mentioned before, potential growth is always something to keep in mind.
But even if we remove that from the equation, IP addresses are used up quicker than you’d think
nowadays—even when it comes to internal addressing. Average users may consume three IP addresses
each, and sometimes more.

For example, perhaps a user not only has a laptop (which itself can have both a wired and wireless
interface, both consuming an IP address), but perhaps they also have a mobile phone (which likely
features Wi-Fi), and a Voice over IP (VoIP) phone (there goes another address). If that user somehow
manages to convince their supervisor that they also need a desktop computer as well as their laptop,
there will be a total of five IP addresses for that one user. Suddenly, 254 addresses don’t seem like all
that many.

Perhaps a really good real-world example of the number of available IP addresses potentially being a
problem is a small restaurant in a busy city that offers free Wi-Fi to its customers. The person designing
the guest network for their customers may assume that a /24 network is more than enough if they only
have one hundred customers or so each day. While that logic may seem sound, consider that if the
restaurant is next to a busy street, people that have Wi-Fi enabled on their phone may snag an address
as they pass by, and if the DHCP addresses are configured to expire in 24 hours, then there will often
be no available IP addresses for actual customers most of the time. If you’ve ever attempted to connect
to a restaurant Wi-Fi network and found yourself unable to access the internet after connecting, this
could be a real-world example of a pain point of not designing a network layout effectively.

Chapter 11 229

The obvious answer to this problem is splitting up your network into subnets. Although I won’t go into
the details of how to subnet your network (which would be beyond the scope of this book), I mention
it here because it’s definitely something you should take into consideration. In the next section, I’ll
explain how to set up your own DHCP server with a single network. However, if you need to expand your
address space, you can easily do so by updating your DHCP configuration. When coming up with an IP
address layout, always assume the worst and plan ahead. While it may be a simple task to expand your
DHCP server, planning a new IP scheme rollout is very time-consuming, and to be honest, annoying.

When I set up a new network, I like to divide the address space into several categories. First, I’ll usually
set aside a group of IP addresses specifically for DHCP. These addresses will get assigned to clients as
they connect, and I’ll usually have them expire and need to be renewed in about one day. Then, I’ll
set aside a block of IP addresses for network appliances, another block for servers, and so on. In the
case of a typical /24, I might decide on a scheme such as the following (assuming it’s a small office
with no growth planned):

Network: 192.168.1.0/24
Network equipment: 192.168.1.1 - 192.168.1.10
Servers: 192.168.1.11 - 192.168.1.99
DHCP: 192.168.1.100 - 192.168.1.240
Reservations: 192.168.1.241 - 192.168.1.254

Since I mentioned it’s a good idea to plan for future growth, the /24 would be potentially constrained
and wouldn’t accommodate much growth. I chose that scheme to keep everything in this chapter
simple for the sake of easy explanation. But in a real company network, you may want to consider a
larger number of IP addresses than what the above would give you.

How do you get more IP addresses? Take a look at the number after the network address, which is
/24 on the first line. With that number, we’re configuring how large the IP address space is, which
essentially correlates to how many IP addresses we have available. That number is known as a CIDR
notation, which stands for Classless Inter-Domain Routing. Similar to a subnet mask, changing that
number results in a different number of IP addresses. For example, if you change the /24 portion of
the network to /22, you instantly have 1,022 possible addresses to work with, rather than 254. If you
lower it again to /20, the number jumps to 4,094. For now, don’t worry too much about this. You can
focus on remembering that the higher the number, the fewer IP addresses you have. It can go up to
/32, which only gives you one IP address. If you’d like to experiment further with subnetting, we’ve
provided a subnet calculator in the Further reading section.

The following is a list of common CIDR values and their impact on the number of available IP addresses:

CIDR Total Usable IP Addresses

/32 1

/24 254

/16 65,534

/8 16,777,214

Setting Up Network Services230

Of course, no single IP address scheme is right for everyone. The scheme I provided earlier is simply
a hypothetical example, so you shouldn’t copy mine and use it on your network unless it matches your
needs. I’ll use this scheme for the remainder of this chapter, since it works fine as an example. To explain
my sample rollout, we start off with a 24-bit network, 192.168.1.0/24. The address 192.168.1.0 refers
to the network itself, and that IP address is not assignable to clients. The first usable IP address in this
subnet will be 192.168.1.1. The last IP address in this block (192.168.1.255) is not assignable either,
since that is known as the broadcast address. Anything that’s sent to the broadcast address is effectively
sent to every IP in the block, so we can’t really use it for anything but broadcasts. In summary, keep
in mind that an IP address ending in .0 can’t be used, and neither can an IP address that ends in .255.

Going back to the example IP layout mentioned earlier in this section, I set aside a group of IP addresses
starting with 192.168.1.1 through 192.168.1.10 for use by network appliances. Typical devices
that would fit into this category would be managed switches, routers, wireless access points, and so
on. These devices typically have an integrated web console for remote management, so it would be
best to have a static IP address assignment. That way, I’ll have an IP address available that I can use
to access these devices. I like to set up network appliances as the first devices so that they all get the
lowest numbers when it comes to the last number of each IP address. This is just personal preference.

Next in the example layout, we define IP addresses 192.168.1.11 through 192.168.1.99 for servers.
This may seem like quite a few addresses for servers, and it is. However, with the rise of virtualization
and how simple it has become to spin up a server, this block could get used up faster than you’d think.
Feel free to adjust accordingly.

Now we have our DHCP pool, which consists of addresses 192.168.1.101 through 192.168.1.240.
These IP addresses are assignable to any devices that connect to our network. Typically, I like to have
these assignments expire in one day to prevent one-off devices from claiming and holding onto an
IP address for too long, which can lead to devices fighting over a DHCP lease. In this situation, you’d
have to clear your DHCP leases to reset everything, and I find that to be too much of a hassle. When
we get to the section on setting up a DHCP server, I’ll show you how to set the expiration time.

Finally, we have addresses 192.168.1.241 through 192.168.1.254 for the purposes of DHCP
reservations. I generally refer to reserved DHCP addresses as static leases, but both terms mean the
same thing. These addresses will be assigned by DHCP, but each device with a static lease will be
given the same IP address each time. You don’t have to separate these into their own pool, since DHCP
will not assign the same address twice. It may still be a good idea to separate them though, if only to
be able to tell from looking at an IP address that it’s a static lease, due to it being within a particular
hypothetical block. Static leases are good for devices that aren’t necessarily a server but still need a
predictable IP address.

Technically, you can assign IP addresses ending in .0 or .255, depending on the CIDR
value. However, since those ending values are most often used to refer to the network
itself and the broadcast address respectively, some applications and pieces of hardware
may not accept these values so for all intents and purposes, you should consider those
ending values as unassignable.

Chapter 11 231

An example of this may be an administrator’s desktop PC. Perhaps they want to be able to connect to
the office via VPN and be able to easily find their computer on the network and connect to it. If the IP
was dynamically assigned instead of statically assigned, it would be harder for them to find it.

After you carve up your IP addresses, the next thing is to make sure that they’re accurately documented.
If you don’t focus on documentation now while designing services, you will definitely regret it later.
You can consider setting up a private wiki server, for example.

Another method is creating a spreadsheet to keep track of your static IP assignments. This is acceptable
if you don’t have a better solution; it doesn’t have to be anything fancy. Among the usual components,
such as the device info and IP address, I also include the MAC address of each device on the spreadsheet,
which will come in handy when we set up our DHCP server in the next section:

Figure 11.1: An example IP address layout spreadsheet

As you can see from my example layout, our number of available addresses is rather limited with a
24-bit network. However, this layout will serve as an example we can follow that’s good enough for
the remainder of the chapter. At this point, just think about the factors that are important to your
organization, and ensure that any networks you create are scalable and accommodate your needs.

Now that we have an IP layout (if we didn’t have one already), we can take a look at setting up a DHCP
server, which will be the service that will ultimately be assigning these IPs.

Setting up a DHCP server for serving IP addresses
Most network appliances you purchase nowadays often come with their own DHCP server and allow
you to configure it via a web console. Often, this is totally fine and meets your needs. In my experience
though, network appliances you purchase can be very hit and miss. Some of them are great, while others
are not so impressive. One of the main problems is that manufacturers will often stop supporting the
hardware prematurely, exposing your network to unpatched vulnerabilities. It’s important to always
purchase network hardware that’s as future-proof as possible. Or, you can set up your own router
with the features that you need. Although the burden of management is placed on you, this gives you
ultimate flexibility. Ubuntu servers make great DHCP servers, and rolling your own server is actually
easier than it sounds. And that’s exactly what we’re going to work through in this section.

First, the server that serves DHCP will definitely need a static IP address. This means you’ll need to
configure Netplan with a static IP assignment. A static lease won’t work here, since the DHCP server
can’t assign an IP address to itself.

Setting Up Network Services232

Also, the IP address that you designate for your server’s static IP must be in the same network as the
addresses that you plan to serve. Otherwise, the service will fail to start even after we configure it.

If you have yet to set a static IP address, Chapter 10, Connecting to Networks, has a section that will walk
you through the process.

Once you assign a static IP address, the next step is to install the isc-dhcp-server package:

sudo apt install isc-dhcp-server

Check the status of the daemon after installing the isc-dhcp-server package, using the following
command:

systemctl status isc-dhcp-server

You’ll likely notice that it failed:

Figure 11.2: isc-dhcp-server failing by default

If it did fail to start, there’s no need to be concerned. Ubuntu, by default, starts most of the services
that are installed via packages. Sometimes, a service needs to be configured before it can run. In
the case of the isc-dhcp-server, it needs a valid configuration in order to start, but we have yet to
configure anything. We need to configure the isc-dhcp-server service for it to be useful, so let’s stop
the service for now.

We can start it as soon as we’ve finished adding our configuration:

sudo systemctl stop isc-dhcp-server

Configuring an IPv6 network isn’t something we’ll be getting into, but the DHCP server package we’ve
just installed also comes with an IPv6 equivalent. Let’s stop and disable this service, since we won’t
be using it:

sudo systemctl stop isc-dhcp-server6
sudo systemctl disable isc-dhcp-server6

Chapter 11 233

Now that you’ve installed the isc-dhcp-server package, you’ll have a default configuration file for it at
/etc/dhcp/dhcpd.conf. This file will contain some default configuration, with some example settings
that are commented out. Feel free to take a look at this file to get an idea of some of the settings you
can configure. We’ll create our own dhcpd.conf file from scratch. So when you’re done looking at it,
move the existing file with a new name so we can refer to it later if we ever need to:

sudo mv /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.conf.orig

Now, we’re ready to create our own dhcpd.conf file. Open /etc/dhcp/dhcpd.conf in your preferred
text editor. Since the file no longer exists (we moved it), we should start with an empty file. Here’s an
example dhcpd.conf file that I will explain so that you understand how it works:

default-lease-time 43200;
max-lease-time 86400;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name "local.lan";
authoritative;
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

As always, change the values I’ve used to those that match your network. I’ll explain each line so that
you’ll understand how it affects the configuration of your DHCP server.

default-lease-time 43200;

When a device connects to your network and requests an IP address, the expiration of the lease will
be set to the number of seconds in default-lease-time if the device doesn’t explicitly ask for a longer
lease time. Here, I’m setting that to 43200 seconds, which is equivalent to half a day. This basically
means that the device will need to renew its IP address every 43200 seconds unless it asks for a longer
duration.

max-lease-time 86400;

While the previous setting dictated the default lease time for devices that don’t ask for a specific lease
time, max-lease-time is the most that the device is allowed to have. In this case, I set this to one day
(86400 seconds). Therefore, no device that receives an IP address from this DHCP server is allowed
to hold onto its lease for longer than this without first renewing it.

option subnet-mask 255.255.255.0;

Setting Up Network Services234

With this setting, we’re informing clients that their subnet mask should be set to 255.255.255.0, which
is for a default 24-bit network. If you plan to subnet your network, you’ll put in a different value here.
255.255.255.0 is fine if all you need is a 24-bit network.

option broadcast-address 192.168.1.255;

With this setting, we’re telling the client to use 192.168.1.255 as the broadcast address, which is the
last address in the subnet and cannot be assigned to a host.

option domain-name "local.lan";

Here, we’re setting the domain names of all hosts that connect to the server to include local.lan. The
domain name is added to the end of the hostname. For example, if a workstation with a hostname
of muffin receives an IP address from our DHCP server, it will be referred to as muffin.local.lan.
Feel free to change this to the domain name of your organization, or you can leave it as is if you don’t
have one.

authoritative;

With the authoritative setting (the opposite is not authoritative), we’re declaring our DHCP
server as authoritative to our network. Unless you are planning to have multiple DHCP servers, the
authoritative; option should be included in your config file. We won’t use the not authoritative;
option as it’s beyond the scope of this chapter.

Now, we get to the most important part of our configuration file for DHCP. The following block details
the specific information that will be provided to clients:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

This block is probably self-explanatory, but we’re basically declaring our pool of addresses for the
192.168.1.0 network. We’re declaring a range of IPs from 192.168.1.100 through 192.168.1.240 to
be available for clients. Now when our DHCP server provides an address to clients, it will choose one
from this pool. For the address pool (range), feel free to expand it or shrink it accordingly. For example,
you might need more addresses than the 140 that are allowed in my sample range, so you may change
it to something like 192.168.1.50 through 192.168.1.250. Feel free to experiment.

We’re also providing a default gateway (option routers) and DNS server (option domain-name-
servers) of 192.168.1.1. This is assuming that your router and local DNS server are both listed at
that address, so make sure that you change it accordingly. Otherwise, anyone who receives a DHCP
lease from your server will not be able to connect to anything.

Chapter 11 235

Now we have our configuration file in place, but the DHCP server will likely still not start until we
declare an interface for it to listen for requests on. You can do that by editing the /etc/default/isc-
dhcp-server file, where you’ll see a line toward the bottom similar to the following:

INTERFACESv4=""

Simply type the name of the interface within the quotes:

INTERFACESv4="enp0s3"

In case you forgot, the command to list the details of the interfaces on your server is ip addr show,
or the shortened version, ip a.

Now that we have our DHCP server configured, we should be able to start it:

sudo systemctl start isc-dhcp-server

Next, double-check that there were no errors by running the following command:

sudo systemctl status isc-dhcp-server

The daemon should report that it’s active (running), similar to what’s shown in the following
screenshot:

Figure 11.3: Checking the status of the isc-dhcp-server process after a successful start

Assuming all went well, your DHCP server should be running. When an IP lease is assigned to a client,
it will be recorded in the /var/lib/dhcp/dhcpd.leases file. While your DHCP server runs, it will also
record information to your server’s system log, located at /var/log/syslog. To see your DHCP server
function in all its glory, you can follow the log as it gets written to with the following:

sudo tail -f /var/log/syslog

We’ve discussed the -f flag of the tail command earlier in the book. This option is indispensable,
and it’s something you’ll likely use quite often as a server administrator. With the -f option, you’ll
watch the log as it gets written to, rather than needing to refresh it manually. You can press Ctrl + c
to break out of the file.

Setting Up Network Services236

While your DHCP server runs, you’ll see notices appear within the syslog file whenever a DHCP
request was received and when a lease is offered to a client. A typical DHCP request will appear in
the log similar to the following:

Oct 5 22:07:36 myserver dhcpd: DHCPDISCOVER from 52:54:00:88:f8:bc via enp0s3
Oct 5 22:07:36 myserver dhcpd: DHCPOFFER on 192.168.1.103 to 51:52:01:87:f7:bc
via enp0s3

Active and previous DHCP leases are stored in the /var/lib/dhcp/dhcpd.leases file, and a typical
lease entry in that file would look similar to the following:

lease 192.168.1.138 {
 starts 0 2022/10/05 16:37:30;
 ends 0 2022/10/06 16:42:30;
 cltt 0 2022/20/06 16:37:30;
 binding state active;
 next binding state free;
 rewind binding state free;
 hardware ethernet 32:6e:92:01:1f:7f;
}

When a new device is added to your network and receives an IP address from your new DHCP server,
you should see the lease information populate that file. This file can be incredibly helpful, because
whenever you connect a new device, you won’t have to interrogate the device itself to find out what
its IP address is. You can just check the /var/lib/dhcp/dhcpd.leases file. If the device advertises its
hostname, you’ll see it within its lease entry. A good example of how this can be useful is connecting a
Raspberry Pi to your network. Once you plug it in and turn it on, you’ll see its IP address in the dhcpcd.
leases file, and then you can connect to it via SSH with the IP without having to plug a monitor into it
to find out which IP it was given. Similarly, you can view the temporary IP address of a new network
appliance that you plug in so that you can connect to it and configure it.

If you have any trouble setting up the isc-dhcp-server daemon, double-check that you have set all
the correct and matching values within your static IP assignment, as well as within your /etc/dhcp/
dhcpd.conf file. For example, your server must be within the same network as the IPs you’re assigning
to clients. As long as everything matches, you should be fine and it should start properly.

Next, let’s take a look at another important service within a network—DNS.

Adding a DNS server
I’m sure most of you are familiar with the purpose of a Domain Name System (DNS) server. Its simplest
definition is that it’s a service that’s responsible for matching an IP address to a domain or hostname.
When you’re connected to the internet, name-to-IP matching happens constantly as you browse.
After all, it’s much easier to connect to https://www.google.com/ using its domain name than it is
to remember its IP address.

https://www.google.com/

Chapter 11 237

When you connect to the internet, your workstation or server will connect to an external DNS server
in order to figure out the IP addresses for the websites you attempt to visit.

It’s also very common to run a local DNS server internally in your organization. The benefit is that
you’ll be able to resolve your local hostnames as well, something that an external DNS server would
know nothing about. For example, if you have an intranet site that you intend to make available to your
co-workers, it would be easier to give everyone a local domain that they can access than it would be to
make everyone memorize its IP address. With a local DNS server, you would create what is known as
a zone file, which would contain information regarding the hosts and IP addresses in use within your
network so that local devices would be able to resolve them. In the event that your local DNS server
is unable to fulfill your request (such as a request for an external website), the server would pass the
request along to an external DNS server, which would then carry out the request.

While DNS is an extensive topic that can take a while to master, a basic understanding is really all
you need in order to make use of a custom DNS server within your network. In this section, I’ll show
you how to set up your very own DNS server to allow your devices to resolve local hostnames, which
should greatly enhance your network.

Setting up external DNS with bind
To set up your very own DNS server, we’ll first need to install the Berkeley Internet Name Daemon
(BIND) package on our server:

sudo apt install bind9

Now, we should have the bind9 service running on our server, though it’s not actually configured to do
much at this point. The most basic function of bind is to act as what’s called a Caching Name Server,
which means that the server doesn’t actually match any names itself. Instead, it caches responses from
an external server – which can actually increase the performance of your network in some cases. We’ll
configure bind with actual hosts later, but setting up a caching name server is a good way to get started.

To do so, open the /etc/bind/named.conf.options file in your favorite text editor.

Within the file, you should see a block of text that looks similar to the following:

// forwarders {
// 0.0.0.0;
// };

Uncomment these lines. The forward slashes are comment marks as far as this configuration file is
concerned, so remove them. Then, we can add a few external DNS server IP addresses. For these, you
can use the IP addresses for your Internet Service Provider (ISP)’s DNS servers, or you could simply
use Google’s DNS servers (8.8.8.8 and 8.8.4.4) instead:

forwarders {
 8.8.8.8;
 8.8.4.4;
};

Setting Up Network Services238

After you save the file, restart the bind9 service:

sudo systemctl restart bind9

To be sure that everything is running smoothly, check the status of the service:

systemctl status bind9

It should report that it’s active (running). As long as you’ve entered everything correctly, you should
now have a working DNS server. Of course, we haven’t added any DNS names for it to resolve, but we’ll
get to that. Now, all you should need to do is configure other devices on your network to use your new
DNS server. The easiest way to do this is to reconfigure the isc-dhcp-server service we set up in the
previous section. Remember the section that designates a pool of addresses from the server to the
clients? It also contained a section to declare the DNS server your clients will use as well. Here’s that
section again, with the relevant line in bold:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

To configure the devices on your network to use your new DNS server, all you should need to do is
change the configuration option domain-name-servers 192.168.1.1; to point to the IP address of
the new DNS server that we’re in the process of setting up. When clients request a DHCP lease (or
attempt to renew an existing lease), they will be configured with the new DNS server automatically.

With the caching name server we just set up, hosts that utilize it will check it first for any hostnames
they attempt to look up. If they look up a website or host that is not within your local network, their
requests will be forwarded to the forwarding addresses you configured for bind.

In my example, I used Google’s DNS servers, so if you used my configuration, your hosts will first check
your local server and then check Google’s servers when resolving external names. Depending on your
network hardware and configuration, you might even see a slight performance boost. This is because
the DNS server you just set up is caching any lookups done against it. For example, if a client looks up
https://www.packtpub.com in a web browser, your DNS server will forward the request along since
that site doesn’t exist locally and it will also remember the result. The next time a client within your
network looks up that site, the response will be much quicker because your DNS server cached it.

To see this yourself, execute the following command twice on a node (device) that is utilizing your
new DNS server:

dig www.packtpub.com

If dig isn’t available in your installation, you can install it as part of the dnsutils package:

sudo apt install dnsutils

https://www.packtpub.com

Chapter 11 239

In the response, look for a line toward the end that gives you your query time. It will look similar to
the following:

;; Query time: 98 msec

When you run it again, the query time should be much lower:

;; Query time: 1 msec

This is your caching name server in action! Even though we haven’t even set up any zone files to
resolve your internal servers, your DNS server is already adding value to your network. You just laid
the groundwork we’ll use for the rest of our configuration.

Setting up internal DNS and adding hosts
Now, let’s add some hosts to our DNS server so we can start fully utilizing it. The configuration file
for bind is located at /etc/bind/named.conf. In addition to some commented lines, it will have the
following three lines of configuration within it:

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

As you can see, the default bind configuration is split among several configuration files. Here, it includes
three others: named.conf.options, named.conf.local, and named.conf.default-zones (the first of
which we already took care of editing). In order to resolve local names, we need to create a zone file,
which is essentially a text file that includes some configuration, a list of hosts, and their IP addresses.
In order to do this, we need to tell bind where to find the zone file we’re about to create. Within
/etc/bind/named.conf.local, we need to add a block of code like the following to the end of the file:

zone "local.lan" IN {
 type master;
 file "/etc/bind/net.local.lan";
};

Notice that the zone is named local.lan, which is the same name I gave our domain in our DHCP server
configuration. It’s best to keep everything consistent when we can. If you use a different domain name
than the one I used in my example, make sure that it matches here as well. Within the block, we’re
creating a master zone file and informing bind that it can find a file named net.local.lan, stored in
the /etc/bind directory. This should be the only change we’ll need to make to the named.conf.local
file; we’ll only create a single zone file (for the purpose of this section). Once you save this file, you’ll
need to create the /etc/bind/net.local.lan file. So, go ahead and open that file in a text editor. Since
we haven’t created it yet, it should be blank. Here’s an example of this zone file, completely filled out
with some sample configuration:

$TTL 1D
@ IN SOA local.lan. hostmaster.local.lan. (

Setting Up Network Services240

202208161; serial

8H ; refresh
4H ; retry
4W ; expire
1D) ; minimum
IN A 192.168.1.1
;
@ IN NS hermes.local.lan.
fileserv IN A 192.168.1.3
hermes IN A 192.168.1.1
mailserv IN A 192.168.1.5
mail IN CNAME mailserv.
web01 IN A 192.168.1.7

Feel free to edit this file to match your configuration. You can edit the list of hosts at the end of the
file to match your hosts within your network, as the ones I included are merely examples. You should
also ensure that the file matches the IP scheme for your network. Next, I’ll go over each line in order
to give you a deeper understanding of what each line of this configuration file is responsible for:

$TTL 1D

The Time to Live (TTL) determines how long a record may be cached within a DNS server. If you recall
from earlier, where we practiced with the dig command, you saw that the second time you queried a
domain with dig, the query time was less than the first time you ran the command. This is because your
DNS server cached the result, but it won’t hold onto it forever. At some point, the lookup will expire.
The next time you look up that same domain after the cached result has expired, your server will go
out and fetch the result from the DNS server again. In my examples, I used Google’s DNS servers. That
means at some point, your server will query those servers again once the record times out.

With the Start of Authority (SOA) line, we’re establishing that our DNS server is authoritative over the
local.lan domain:

@ IN SOA local.lan. hostmaster.local.lan. (

We also set hostmaster@local.lan as the email address of the responsible party for this server, but we
enter it here in a different format for bind (hostmaster.local.lan). This is obviously a fake address,
but for the purposes of an internal DNS server, its validity is of no concern.

Of all the lines of configuration within a zone file, serial is by far the one that will frustrate us the most:

202208161; serial

This is because it’s not enough to simply update the zone file any time we make a change to it (change
an IP address, add or remove a host, and so on); we also need to remember to increase the serial
number by at least one. If we don’t, bind won’t be aware that we’ve made any changes, as it will look
at the serial number before the rest of the file.

Chapter 11 241

The problem with this is that you and I are both human, and we’re prone to forgetting things. I’ve
forgotten to update serial many times and have become frustrated when the DNS server refused to
resolve new hosts that were recently added. Once I remembered that I didn’t increment the serial
number, the issue was resolved after I did. Therefore, it’s very important for you to remember that any
time you make a change to any zone file, you’ll need to also increment the serial number.

The format doesn’t really matter; I used 202208161, which is simply the year, two-digit month, two-
digit day, and an extra number to cover us if we make more than one change in a day (which can
sometimes happen). As long as you increment the serial number by one every time you modify your
zone file, you’ll be in good shape—regardless of what format you use. However, the sample format I
gave here is actually quite common in the field.

These values control how often secondary DNS servers will be instructed to check in for updates:

8H ; refresh
4H ; retry
4W ; expire
1D) ; minimum

With the example refresh value, we’re instructing any secondary DNS servers to check in every eight
hours to see whether or not the zone records were updated. The retry field dictates how long the
secondary will wait to check in, in case there was an error doing so the last time. The last two options
in this section, expire and minimum, set the minimum and maximum age of the zone file, respectively.
As I mentioned though, a full discussion of DNS with bind could constitute an entire book on its own.
For now, I would just use these values until you have a reason to need to experiment. Here, we identify
the name server itself:

IN A 192.168.1.1
@ IN NS hermes.local.lan.

In my case, the server is called hermes and it’s located at 192.168.1.1.

Next, in our file, we’ll have several host entries to allow our resources to be resolved on our network
by name:

fileserv IN A 192.168.1.3
hermes IN A 192.168.1.1
mailserv IN A 192.168.1.5
mail IN CNAME mailserv.
web01 IN A 192.168.1.7

In that example, I have three hosts: fileserv, mailserv, and web01. In the example, these are all
address records, which means that any time our server is asked to resolve one of these names, it will
respond with the corresponding IP address. If our DNS server is set as a machine’s primary DNS server,
it will respond with 192.168.1.3 when asked for fileserv and 192.168.1.7 when asked for web01.

Setting Up Network Services242

The entry for mail is special as it is not an address record, but instead a Canonical Name (CNAME)
record. In this case, it just points back to mailserv. Essentially, that’s what a CNAME record does: it
creates a pointer to another resource. In this case, if someone tries to access a server named mail, we
redirect them to the actual server mailserv. Notice that on the CNAME record, we’re not inputting an
IP address, but instead the hostname of the resource it’s linked to.

In addition, you should also notice that I added the DNS server itself (hermes) to the file as well. You
can see it on the second line above. I’ve found that if you don’t do this, the DNS server may complain
and refuse to load the file.

Now that we have a zone file in place, we should be able to start using it. First, we’ll need to restart
the bind9 service:

sudo systemctl restart bind9

After the command finishes, check to see if there are any errors:

systemctl status bind9

You should see that the service state is active (running), and in addition, you should see a line telling
you that the serial number for your zone file was loaded. If you see that the service is not running and/
or your zone file was not loaded, you should see specific information in the output while checking the
status that should point you in the right direction. If not, you can also check the system log for clues
regarding bind as well:

cat /var/log/syslog | grep bind9

The most common mistakes I’ve seen typically result from not being consistent within the file. For
example, if you’re using a different IP scheme (such as 10.10.10.0/24), you’ll want to make sure
you didn’t forget to replace any of my example IP addresses with the proper scheme. Assuming that
everything went smoothly, you should be able to point devices on your network to use this new DNS
server. Make sure you test not only pinging devices local to your network but outside resources as
well, such as websites. If the DNS server is working properly, it should resolve your local names, and
then forward your requests to your external DNS servers (the two we set as forwarders) if it doesn’t
find what you’re looking for locally. In addition, you’ll also want to make sure that port 53 (UDP) is
open in your network’s firewall, which is the port that DNS uses. It’s extremely rare that this would be
an issue, but I have seen it happen.

To further test our DNS server, we can use the dig command, as we did before while we were
experimenting with caching. Try dig against a local server on your LAN, as well as a DNS address
that’s not located on your LAN (change the first domain to an actual domain on your LAN):

dig webserv.local.lan
dig www.packtpub.com

You should see a response similar to the following:

;; Query time: 1 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)

Chapter 11 243

;; WHEN: Sat Feb 10 10:00:59 EST 2022
;; MSG SIZE rcvd: 83

What you’re looking for here is for both local resources and external websites to be resolvable now.
You’ll probably notice that the DNS server used in the output will most likely show up as a localhost
address, as it did in my output, and not the address of the DNS server we just set up. Actually, you
can ignore this. Most distributions of Linux nowadays use local resolvers, which essentially cache
DNS lookup results on your local computer. Your computer is still using the DNS server we set up, but
there’s just an additional layer in between your computer and the DNS server. You can verify this with
the following command:

resolvectl

The output will show you the IP address of the actual server that’s responding to your DNS lookups.

Next, let’s take a look at the process of setting up an internet gateway, which is an option to consider if
you don’t already have a router or firewall on your network that acts as a device between your internet
connection and your internal network.

Setting up an internet gateway
As long as we’re setting up network services, we may as well go all the way and set up a router to act
as a gateway for our network. A gateway within a network is the device you go through to route from
one network to another. In this context, the internet gateway will be the device that sits between your
local network and the device that provides your internet connection (such as a cable modem). The
gateway in a typical network is usually a commercial router or firewall, which often also provides
DNS, DHCP, and routing services as well.

If you already have such a device on your network providing these services, then there’s nothing for
you to do. You can skip this section. But if you’d like to set up your own router, then feel free to proceed.

If you’d like to proceed and set up a router, then the first order of business is to decide which device on
your network will serve that purpose. Often, administrators will build DNS, DHCP, and routing services
all into the same server, so you can even use the same device you’ve used earlier to work through the
DNS and DHCP examples for our purposes in this section. In order for a device to function as a gateway,
it should have at least two network interfaces, one to your ISP device (such as a cable modem) and
another interface connected to a network switch that your other servers will connect to. The interface
connected to your ISP device should use DHCP, so it will obtain an IP address directly from your ISP.
This interface may need a static IP with details provided from the ISP, if relevant.

Depending on what kind of internet connection you have, Linux itself can likely replace whatever
device your internet modem connects to. A good example of this is a cable modem that your office or
home router may utilize. In this case, the modem provides your internet connection, and then your
router allows other devices on your network to access it. In some cases, your modem and router may
even be the same device. Therefore, depending on the hardware you have, this method of setting up
your networking may or may not be efficient. But if you do have the hardware available, you’ll be able
to manage the entire networking stack with Ubuntu Server quite easily.

Setting Up Network Services244

Why might you want to create your own internet gateway? One potential reason is that it’s often the case
that security patches aren’t provided for commercial routers and firewall devices. New vulnerabilities
are discovered all the time, and if your router or firewall is no longer supported by the manufacturer,
it may allow outside threats into your network. By setting up an internet gateway with Ubuntu, you’ll
benefit from the regular updates that Canonical provides. As long as you’re using a version of Ubuntu
that’s still supported (such as an LTS release, as is the case with Ubuntu 22.04), you’ll benefit from a
more secure platform. If nothing else, a physical server that we can install Ubuntu on will usually have
a more powerful CPU than a commercial device would have, which would mean that CPU bottlenecks
slowing down network performance would be less likely to happen.

Thankfully, setting up an internet gateway is easy. In fact, we’ll only need to execute a single command
to set up routing between interfaces, which is technically all that’s required in order to set up an
internet gateway. But before we get into that, it’s also important to keep in mind that if you do set up
an internet gateway, you’ll need to pay special attention to security. The device that sits between your
network and your modem will be a constant attack target, just like any other gateway device would
be. When it comes to commercial routers, they’re also attacked constantly.

However, in most cases, they’ll have some sort of default security or firewall built in. In all honesty,
the security features built into common routing equipment are extremely poor and most of them are
easy to hack when someone wants to badly enough. The point is that these devices have some sort
of security to begin with (regardless of how good or bad), whereas a custom internet gateway of your
own won’t have any security at all until you add it.

When you set up an internet gateway, you’ll want to pay special attention to setting up the firewall,
restricting access to SSH, using very strong passwords, keeping up to date on security patches, and
installing an authentication monitor such as fail2ban. We’ll get into those topics in Chapter 21, Securing
Your Server. The reason I bring this up now, though, is that if you do set up an internet gateway, you’ll
probably want to take a detour and read that chapter right away, just to make sure that you secure it
properly.

Anyway, let’s move on. A proper internet gateway, as I’ve mentioned, will have two Ethernet ports. On
the first, you’ll plug in your cable modem or internet device, and you’ll connect a switch to the second.
By default though, routing between these interfaces will be disabled, so traffic won’t be able to move
from one Ethernet port to the other. To rectify this, use the following command:

echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward

That’s actually it. With that single command, you’ve just made your server into a router. However, that
change will not survive a reboot. To make it permanent, open the /etc/sysctl.conf file in your editor:

sudo nano /etc/sysctl.conf

Look for the following line:

#net.ipv4.ip_forward=1

Chapter 11 245

Uncomment the line by removing the hash symbol in front of it, and save the file. With that change
made, your server will allow routing between interfaces even after a reboot. Of all the topics we’ve
covered in this chapter, that one was probably the simplest. However, I must remind you again to
definitely secure your server if it’s your frontend device to the internet, as computer security students
always enjoy practicing on a real-life Linux server. With good security practices, you’ll help ensure
that they’ll leave you alone, or at least have a harder time breaking in.

From here, all you should need to do is attach a network switch to your other network interface, and
then you can attach your other wired Ethernet devices and wireless access point to the switch. Now,
Ubuntu Server is managing your entire network!

Summary
In this chapter, we explored additional networking topics. We started off with some notes on planning
an IP address scheme for your network so that you could create groups for the different types of nodes,
such as servers and network equipment, and plan a pool of addresses for DHCP. We also worked through
the process of setting up a DHCP and DNS server, which gives us additional flexibility when configuring
the services we run on our network, such as when defining a custom IP scheme for DHCP, as well as
giving us the ability to resolve the hostnames of devices on our network by name. We closed off this
chapter with a discussion on setting up an internet gateway to serve as our internet-facing router.

In the next chapter, we’ll take a look at sharing and transferring files over the network. This will include
covering NFS and Samba shares, as well as using scp, rsync, and sshfs. Stay tuned!

Further reading
•	 8 Steps to Understanding IP Subnetting: https://learnlinux.link/8-ip-sub
•	 IP Subnet Calculator: https://learnlinux.link/s-calc

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://learnlinux.link/8-ip-sub
https://learnlinux.link/s-calc
https://packt.link/LWaZ0

12
Sharing and Transferring Files

In the previous chapter, we looked at what’s involved in the process of setting up a few network
services, such as DHCP and DNS. Those are two important components of a network, but there are
quite a few different types of applications and resources you can make available on your network to
further enhance it. A file server is one such example, which can give your users a central place to
store critical files and can even enhance collaboration.

Perhaps you’ve used a file server before, or even set one up on a different platform. With Ubuntu
Server, there are multiple methods to not only store files, but also to transfer files from one node to
another over a network link. In this chapter, we’ll look into setting up a central file server using both
Samba and NFS, as well as how to transfer files between nodes with utilities such as scp and rsync.
We’ll also go over some situations in which one solution may work better for you than another. As we
go through these concepts, we will cover the following topics:

•	 File server considerations
•	 Sharing files with Windows users via Samba
•	 Setting up NFS shares
•	 Transferring files with rsync
•	 Transferring files with scp

Before we can get started with configuring our server to enable it to share files with other users, we
should first understand what our available options are to enable us to choose the best technology for
our use case.

File server considerations
When it comes to setting up a file server, the process is a matter of setting up some sort of daemon
to accept connections and share specific directories, and ensure the appropriate users are able to
access those directories. You’ll also implement permissions to determine who can access specific
directories, and what type of access they will have (read/write, read-only, and so on). When deciding
how to share the files, it’s generally a choice between two common technologies that can facilitate
the actual sharing, Samba and NFS.

Sharing and Transferring Files248

All in all, there’s nothing stopping you from hosting both Samba and NFS shares on a single server. The
two technologies can actually co-exist on the same device. However, each of the two popular solutions
is more appropriate for particular use cases. Before we get started with setting up our file server, we
should first understand the differences between Samba and NFS, so we can make an informed decision
as to which one is more appropriate for our environment. As a general rule of thumb, Samba is great for
mixed environments (where you have Windows as well as Linux clients), and NFS is more appropriate
for use in Linux or Unix environments, but there’s a bit more to it than that.

Samba is a great solution for many environments, because it allows you to share files with Windows,
Linux, and macOS machines. Basically, pretty much everyone will be able to access your shares, provided
you give them permission to do so. The reason this works is because Samba is a re-implementation
of the Server Message Block (SMB) protocol, which is primarily used by Windows systems. However,
you don’t need to use the Windows platform in order to be able to access Samba shares, since many
platforms offer support for this protocol.

You may be wondering why I am going to cover two different solutions in this chapter. After all, if
Samba shares can be accessed by pretty much everything and everyone, why bother with anything
else? Even with Samba’s many strengths, there are weaknesses as well. First of all, permissions are
handled very differently, so you’ll need to configure your shares in specific ways in order to prevent
access to users that shouldn’t be able to see confidential data. With NFS, full support for standard UNIX
permissions is provided, so you’ll only need to configure your permissions once. If permissions and
confidentiality are important to you, you may want to look closer at NFS.

It’s also not accurate to say that Windows systems cannot access NFS shares, because some versions
actually can. By default, no version of Windows supports NFS outright, but some editions offer a plugin
you can install that enables this support. If you install Services for NFS, your installation of Windows
will be able to access NFS shares from that point forward.

Regarding an all-Linux environment or a situation where you only have Linux machines that need to
access your shares, NFS is a great choice because it integrates much more tightly with the rest of the
distribution. Permissions can be more easily enforced and, depending on your hardware, performance
may be higher. The specifics of your environment will make your decision for you. Perhaps you’ll
choose Samba for your mixed environment, or NFS for your all-Linux environment. Maybe you’ll even
set up both NFS and Samba, having shares available for each platform. My recommendation is to learn
and practice both, since you’ll use both solutions at one point or another during your career anyway.

Before you continue to the sections on setting up Samba and NFS, I recommend you first decide
where in your filesystem you’d like to act as a parent directory for your file shares. This isn’t actually
required, but I think it makes for better organization. There is no one right place to store your shares,
but personally I like to create a /share directory at the root filesystem and create sub-directories for
my network shares within it. For example, I can create /share/documents, /share/public, and so on
for Samba shares. With regard to NFS, I usually create shared directories within /exports. You can
choose how to set up your directory structure. As you read the remainder of this chapter, make sure
to change my example paths to match yours if you use a different style.

Chapter 12 249

Sharing files with Windows users via Samba
In this section, I’ll walk you through setting up your very own Samba file server. I’ll also go over a
sample configuration to get you started so that you can add your own shares. First, we’ll need to make
sure that the samba package is installed on our server:

sudo apt install samba

When you install the samba package, you’ll have a new daemon installed on your server, smbd. The
smbd daemon will be automatically started and enabled for you. You’ll also be provided with a default
configuration file for Samba, located at /etc/samba/smb.conf. For now, I recommend stopping samba
since we have yet to configure it:

sudo systemctl stop smbd

Since we’re going to configure Samba from scratch, we should start with an empty configuration file.
Let’s back up the original file, rather than overwrite it. The default file includes some useful notes and
samples, so we should keep it around for future reference:

sudo mv /etc/samba/smb.conf /etc/samba/smb.conf.orig

Now, we can begin a fresh configuration. Although it’s not required, I like to split my Samba configuration
up between two files, /etc/samba/smb.conf and /etc/samba/smbshared.conf. You don’t have to do
this, but I think it makes the configuration cleaner and easier to read. First, here is a sample /etc/
samba/smb.conf file:

[global]
server string = File Server
workgroup = WORKGROUP
security = user
map to guest = Bad User
name resolve order = host bcast wins
include = /etc/samba/smbshared.conf

As you can see, this is a really short file. Basically, we’re including only the lines we absolutely need
to in order to set up a file server with Samba. Next, I’ll explain each line and what it does.

[global]

With the [global] stanza, we’re declaring the global section of our configuration, which will consist
of settings that will impact Samba as a whole. There will also be additional stanzas for individual
shares, which we’ll get to later.

server string = File Server

Sharing and Transferring Files250

The server string is somewhat of a description field for the File Server. If you’ve browsed networks
from Windows computers before, you may have seen this field. Whatever you type here will display
underneath the server’s name in Windows Explorer. This isn’t required, but it’s nice to have.

workgroup = WORKGROUP

Here, we’re setting the workgroup, which is the exact same thing as a workgroup on Windows PCs. In
short, the workgroup is a namespace that describes a group of machines. When browsing network
shares on Windows systems, you’ll see a list of workgroups, and then one or more computers within that
workgroup. In short, this is a way to logically group your nodes. You can set this to whatever you like.
If you already have a workgroup in your organization, you should set it here to match the workgroup
names of your other machines. The default workgroup name is simply WORKGROUP on Windows PCs,
if you haven’t customized the workgroup name at all.

security = user

This setting sets up Samba to utilize usernames and passwords for authentication to the server. Here,
we’re setting the security mode to user, which means we’re using local users to authenticate, rather
than other options such as ads (Active Directory) or domain (domain controller), which are both outside
the scope of this book.

map to guest = Bad User

This option configures Samba to treat unauthenticated users as guest users. Basically, unauthenticated
users will still be able to access shares, but they will have guest permissions instead of full permissions.
If that’s not something you want, then you can omit this line from your file. Note that if you do omit
this, you’ll need to make sure that both your server and client PCs have the same user account names
on either side. Ideally, we want to use directory-based authentication, but that’s beyond the scope of
this book.

name resolve order = host bcast wins

The name resolve order setting configures how Samba resolves hostnames. In this case, we’re using
the broadcast name first, followed by wins. Since wins has been pretty much abandoned (and replaced
by DNS), we include it here solely for compatibility with legacy networks.

include = /etc/samba/smbshared.conf

Remember how I mentioned that I usually split my Samba configurations into two different files? On
this line, I’m calling that second /etc/samba/smbshared.conf file. The contents of the smbshared.
conf file will be inserted right here, as if we only had one file. We haven’t created the smbshared.conf
file yet. Let’s take care of that next. Here’s a sample smbshared.conf file:

[Documents]
path = /share/documents
force user = myuser

Chapter 12 251

force group = users
public = yes
writable = no

[Public]
path = /share/public
force user = myuser
force group = users
create mask = 0664
force create mode = 0664
directory mask = 0777
force directory mode = 0777
public = yes
writable = yes

As you can see, I’m separating share declarations in their own file. We can see several interesting
things within smbshared.conf. First, we have two stanzas, [Documents] and [Public]. Each stanza is
a share name, which will allow Windows users to access the share under //servername/share-name.
In this case, this file will give us two shares: //servername/Documents and //servername/Public.
The Public share is writable for everyone, though the Documents share is restricted to read-only. The
Documents share has the following options:

path = /share/documents

This is the path to the share, which must exist on the server’s filesystem. In this case, when a user
reads files from //servername/Documents on a Windows system, they will be reading data from /
share/documents on the Ubuntu server that’s housing the share.

force user = myuser
force group = users

These two lines are basically bypassing user ownership. When a user reads this share, they are
treated as myuser instead of their actual user account. Normally, you would want to set up LDAP or
Active Directory to manage your user accounts and handle their mapping to Ubuntu Server, but a full
discussion of directory-based user access isn’t covered in this book, so I provided the force options
as an easy starting point. The user account you set here must exist on the server.

public = yes
writable = no

With these two lines, we’re configuring what users are able to do once they connect to this share. In
this case, public = yes means that the share is publicly available, though writable = no prevents
anyone from making changes to the contents of this share. This is useful if you want to share files
with others, but you want to restrict access and stop anyone from being able to modify the content.

Sharing and Transferring Files252

The Public share has some additional settings that weren’t found in the Documents share:

create mask = 0664
force create mode = 0664
directory mask = 0777
force directory mode = 0777

With these options, I’m setting up how the permissions of files and directories will be handled when
new content is added to the share. Directories will be given 777 permissions and files will be given
permissions of 664. Yes, these permissions are very open; note that the share is named Public, which
implies full access anyway, and its intended purpose is to house data that isn’t confidential or restricted:

public = yes
writable = yes

Just as I did with the previous share, I’m setting up the share to be publicly available, but this time I’m
also configuring it to allow users to make changes.

To take advantage of this configuration, we need to start the Samba daemon. Before we do though, we
want to double-check that the directories we entered into our smbshared.conf file exist, so if you’re
using my example, you’ll need to create /share/documents and /share/public:

sudo mkdir /share
sudo mkdir /share/documents
sudo mkdir /share/public

Also, the user account that was referenced in the force user and the group referenced in the force
group must both exist and have ownership over the shared directories:

sudo chown -R jay:users /share

At this point, it’s a good idea to use the testparm command, which will test the syntax of our Samba
configuration files for us. It won’t necessarily catch every error we could have made, but it is a good
command to run to quickly check the sanity. This command will first check the syntax, and then it
will print the entire configuration to the terminal for you to have a chance to review it. If you see no
errors here, then you can proceed to start the service:

sudo systemctl start smbd

Then, check the status to ensure that the daemon is running:

sudo systemctl status smbd

This will produce output similar to the following:

Chapter 12 253

Figure 12.1: Checking the status of the smbd daemon

That really should be all there is to it; you should now have Documents and Public shares on your file
server that Windows users should be able to access. In fact, your Linux machines should be able to
access these shares as well. On Windows, Windows Explorer has the ability to browse file shares on
your network. If in doubt, try pressing the Windows key and the r key at the same time to open the Run
dialog box, and then type the Universal Naming Convention (UNC) path to the share (\\servername\
Documents or \\servername\Public). You should be able to see any files stored in either of those
directories. In the case of the Public share, you should be able to create new files there as well.

On Linux systems, if you have a desktop environment installed, most of them feature a file manager
that supports browsing network shares. Since there are a handful of different desktop environments
available, the method varies from one distribution or configuration to another. Typically, most Linux
file managers will have a network link within the file manager, which will allow you to easily browse
your local shares. In the case of Ubuntu itself, you may need to install smbclient and cifs-utils
via apt, so if you get an error you can try installing those packages. In the following screenshot, an
Ubuntu 22.04 desktop client is browsing shares on a local Samba server:

Figure 12.2: Browsing a Samba share from a Linux client

Sharing and Transferring Files254

If your file manager doesn’t show you the available shares on your server, you can also access a Samba
share by adding an entry for it in the /etc/fstab file, such as the following:

//myserver/share/documents /mnt/documents cifs username=myuser,noauto 0 0

Then, assuming the local directory exists (/mnt/documents in the example fstab line), you should
be able to mount the share with the following command:

sudo mount /mnt/documents

In the fstab entry, I included the noauto option so that your system won’t mount the Samba share at
boot time (you’ll need to do so manually with the mount command). If you do want the Samba share
automatically mounted at boot time, change noauto to auto. However, you may receive errors during
boot if for some reason the server hosting your Samba shares isn’t accessible, which is why I prefer
the noauto option.

If you’d prefer to mount the Samba share without adding an fstab entry, the following example
command should do the trick; just change the share name and mount point to match your local
configuration:

sudo mount -t cifs //myserver/Documents -o username=myuser /mnt/documents

From here, feel free to experiment. You can add additional shares as appropriate, and customize your
Samba implementation as you see fit. In the next section, we’ll explore NFS.

Setting up NFS shares
An alternative to Samba is NFS. It’s a great method of sharing files from a Linux or Unix server to
another Linux or Unix server. As I mentioned earlier in the chapter, Windows systems can access NFS
shares as well, but that requires an add-on to be enabled. Therefore, NFS is preferred in a Linux or
Unix environment, since it fully supports Linux and Unix-style permissions. As you can see from our
dive into Samba earlier, we essentially forced all shares to be treated as being accessed by a particular
user, which was messy, but was the easiest example of setting up a Samba server without also walking
you through setting up a complicated Windows Active Directory deployment. Samba can certainly
support per-user access restrictions and benefits greatly from a centralized directory server, though
that would basically be a book of its own! NFS integrates better in a non-mixed environment.

Earlier, we set up a parent directory in our filesystem to house our Samba shares, and we should do the
same thing with NFS. While it wasn’t mandatory to have a special parent directory with Samba (I had
you do that in order to be neat, but you weren’t required to), NFS really does want its own directory to
house all of its shares. It’s not strictly required with NFS either, but there’s an added benefit in doing
so, which I’ll go over before the end of this section. In my case, I’ll use /exports as an example, so
you should make sure that that directory, or whatever you’ve chosen for NFS, exists:

sudo mkdir /exports

Next, let’s install the required NFS packages on our server. The following command will install NFS
and its dependencies:

Chapter 12 255

sudo apt install nfs-kernel-server

Once you install the nfs-kernel-server package, the nfs-kernel-server daemon will start up
automatically. It will also create a default /etc/exports file (which is the main file that NFS reads its
share information from), but it doesn’t contain any useful settings, just some commented lines. Let’s
back up the /etc/exports file, since we’ll be creating our own:

sudo mv /etc/exports /etc/exports.orig

To set up NFS, let’s first create some directories that we will share with other users. Each share in NFS
is known as an export. I’ll use the following directories as examples, but you can export any directory
you like:

/exports/backup
/exports/documents
/exports/public

In the /etc/exports file (which we’re creating fresh), I’ll insert the following four lines:

/exports *(ro,fsid=0,no_subtree_check)
/exports/backup 192.168.1.0/255.255.255.0(rw,no_subtree_check)
/exports/documents 192.168.1.0/255.255.255.0(ro,no_subtree_check)
/exports/public 192.168.1.0/255.255.255.0(rw,no_subtree_check)

The first line is our export root, which I’ll go over a bit later. The next three lines are individual shares
or exports. The /backup, /documents, and /public directories are being shared from the /exports
parent directory. In this case, after the directory is called out in a line, we’re also setting which network
is able to access them (192.168.1.0/255.255.255.0 in our case). This means that if you’re connecting
from a different network, your access will be denied. Each connecting machine must be a member
of the 192.168.1.0/24 network in order to proceed (so make sure you change this to match your IP
scheme). Finally, we include some options for each export, for example, rw,no_subtree_check.

As far as what these options do, the first (rw) is rather self-explanatory. Here, we can set whether or
not other nodes will be able to make changes to data within the export. In the examples I gave, the
/documents export is read-only (ro), while the others allow read and write.

The next option in each example is no_subtree_check. This option is known to increase reliability
and is mainly implied by default. However, not including it may make NFS complain when it restarts,
but nothing that will actually stop it from working. Particularly, this option disables what is known
as subtree checking, which has had some stability issues in the past. Normally, when a directory is
exported, NFS might scan parent directories as well, which is sometimes problematic, and can cause
issues when it comes to open file handles.

There are several other options that can be included in an export, and you can read more about them
by checking the man page for export:

man exports

Sharing and Transferring Files256

One option you’ll see quite often in the wild is no_root_squash. Normally, the root user on one system
is mapped to nobody on the other for security reasons. In most cases, one system having root access
to another is a bad idea. The no_root_squash option disables this, and it allows the root user on one
end to be treated as the root user on the other. I can’t think of a reason, personally, where this would
be useful (or even recommended), but I have seen this option quite often in the wild, so I figured I
would bring it up. Again, check the man pages for export for more information on additional options
you can pass to your exports.

Next, we have one more file to edit before we can actually seal the deal on our NFS setup. The /etc
/idmapd.conf file is necessary for mapping permissions on one node to another. In Chapter 2, Managing
Users and ermissions, we talked about the fact that each user has an ID (UID) assigned to them. The
problem, though, is that from one system to another, a user will not typically have the same UID. For
example, user jdoe may be UID 1001 on server A, but 1007 on server B. When it comes to NFS, this
greatly confuses the situation, because UIDs are used in order to reference permissions. Mapping
IDs with idmapd allows this to stay consistent and handles translating each user properly, though it
must be configured correctly and consistently on each node. Basically, as long as you use the same
domain name on each server and client and configure the /etc/idmapd.conf file properly on each,
you should be fine.

To configure this, open /etc/idmapd.conf in your text editor. Look for an option that is similar to
the following:

Domain = localdomain

First, remove the # symbol from that line to uncomment it. Then, change the domain to match the one
used within the rest of your network. You can leave this as it is as long as it’s the same on each node,
but if you recall from Chapter 11, Setting Up Network Services, we used a sample domain of local.lan
in our DHCP configuration, so it’s best to make sure you use the same domain name everywhere—even
the domain provided by DHCP. Basically, just be as consistent as you can and you’ll have a much easier
time overall. You’ll also want to edit the /etc/idmapd.conf file on each node that will access your file
server, to ensure they are configured the same as well.

With our /etc/exports and /etc/idmapd.conf files in place, and assuming you’ve already created the
exported directories on your filesystem, we should be all set to restart NFS to activate our configuration:

sudo systemctl restart nfs-kernel-server

After restarting NFS, you should check the daemon’s output via systemctl to ensure that there are
no errors:

systemctl status nfs-kernel-server

As long as there are no errors, our NFS server should be working. Now, we just need to learn how to
mount these shares on another system. Unlike Samba, using a Linux file manager and browsing the
network will not show NFS exports by default; we’ll need to mount them manually. Client machines,
assuming they are Debian-based (Ubuntu fits this description), will need the nfs-common package
installed in order to access these exports.

Chapter 12 257

It may already be installed, but if it’s not, we can install it with apt like any other package:

sudo apt install nfs-common

With the client installed, we can now use the mount command to mount NFS exports on a client.
For example, with regards to our documents export, we can use the following variation of the mount
command to do the trick:

sudo mount myserver:/documents /mnt/documents

Replace myserver with either your server’s hostname or its IP address, documents with the name of
the actual share on the server, and /mnt/documents with the path on your local server where you
want to mount the share. From this point forward, you should be able to access the contents of the
documents export on your file server. Notice, however, that the exported directory on the server was
/exports/documents, but we only asked for /documents instead of the full path with the example mount
command. The reason this works is because we identified an export root of /exports. To save you from
flipping back, here’s the first line from the /etc/exports file, where we identified our export root:

/exports *(ro,fsid=0,no_subtree_check)

With the export root, we basically set the base directory for our NFS exports. We set it as read-only (ro),
because we don’t want anyone making any changes to the /exports directory itself. Other directories
within /exports have their own permissions and will thus override the ro setting on a per-export
basis, so there’s no real reason to set our export root as anything other than read-only. With our
export root set, we don’t have to call out the entire path of the export when we mount it; we only need
the directory name. This is why we can mount an NFS export from myserver:/documents instead of
having to type the entire path. While this does save us a bit of typing, it’s also useful because from
the user’s perspective, they aren’t required to know anything about the underlying filesystem on the
server. There’s simply no value in the user having to memorize the fact that the server is sharing a
document’s directory from /exports; all they’re interested in is getting to their data. Another benefit
is if we ever need to move our export root to a different directory (during a maintenance period),
our users won’t have to change their configuration to reference the new place; they’ll only need to
unmount and remount the exports.

So, at this point, you’ll have three directories being exported from your file server, and you can always
add others as you go. However, whenever you add a new export, it won’t be automatically added and
read by NFS. You can restart NFS to activate new exports, but that’s not really a good idea while users
may be connected to them, since that will disrupt their access. Thankfully, the following command will
cause NFS to reread the /etc/exports file without disrupting existing connections. This will allow you
to activate new exports immediately without having to wait for users to finish what they’re working on:

sudo exportfs -a

With this section out of the way, you should be able to export a directory from your Ubuntu Server, and
then mount that export on another Linux machine. Feel free to practice creating and mounting exports
until you get the hang of it. In addition, you should familiarize yourself with a few additional options
and settings that are allowable in the /etc/exports file, after consulting the man page on exports.

Sharing and Transferring Files258

When you’ve had more NFS practice than you can tolerate, we’ll move on to a few ways in which you
can copy files from one node to another without needing to set up an intermediary service or daemon.

Transferring files with rsync
Of all the countless tools and utilities available in the Linux and Unix world, few are as beloved as
rsync. This is a utility that you can use to copy data from one place to another very easily, and there are
many options available to allow you to be very specific about how you want the data to be transferred.
Examples of its many use cases include copying files while preserving permissions, copying files
while backing up replaced files, and even setting up incremental backups. If you don’t already know
how to use rsync, you’ll probably want to get lots of practice with it, as it’s something you’ll soon see
will be indispensable during your career as a Linux administrator, and it is also something that the
Linux community generally assumes you already know. Thankfully, rsync is not hard to learn. Most
administrators can learn the basic usage in about an hour or less, but the countless options available
will lead you to learn new tricks even years down the road.

Another aspect that makes rsync flexible is the many ways you can manipulate the source and target
directories. I mentioned earlier that rsync is a tool you can use to copy data from one place to another.
The beauty of this is that the source and target can literally be anywhere you’d like, assuming you have
appropriate access. For example, the most common usage of rsync is to copy data from a directory
on one server to a directory on another server over the network. However, you don’t even have to use
the network; you can even copy data from one directory to another on the same server. While this
may not seem like a useful thing to do at first, consider that the target directory may be a mount point
that leads to a backup disk, or an NFS share that actually exists on another server. This also works in
reverse: you can copy data from a network location to a local directory if you desire.

To get started with practicing with rsync, I recommend that you find some sample files to work with.
Perhaps you have a collection of documents you can use, MP3 files, videos, text files, or basically any
kind of data you have lying around. It’s important to make a copy of this data. If we make a mistake we
could overwrite things, so it’s best to work with a copy of the data, or data you don’t care about, while
you’re practicing. If you don’t have any files to work with, you can create some text files. The idea is to
practice copying files from one place to another; it really doesn’t matter what you copy or where you
send it to. I’ll walk you through some rsync examples that will progressively increase in complexity.
The first few examples will show you how to back up a home directory, but later examples will be
potentially destructive so you will probably want to work with sample files until you get the hang of it.

The /etc/exports file, as you’ve seen in this section, is typically all you’ll need to set
up a basic file server via NFS. However, you should also be aware that there’s another
configuration file, /etc/nfs.conf, and that file is new in Ubuntu 22.04. The purpose of
this file is to tune the finer details of the NFS server. Although it’s out of scope to go over
the /etc/nfs.conf file, it’s worth having a look at this file in order to get a feel for which
types of options are available. For more information, see the further reading section at
the end of this chapter.

Chapter 12 259

Here’s our first example:

sudo rsync -r /home/myuser /backup

With that command, we’re using rsync (as root) to copy the contents of the home directory for the
myuser directory to a backup directory, /backup (make sure the target directory exists). In the example,
I used the -r option, which means rsync will grab directories recursively as well. You should now see
a copy of the /home/myuser directory inside your /backup directory.

However, we have a bit of a problem. If you look at the permissions in the /backup/myuser directory,
you can see that everything in the target is now owned by root. This isn’t a good thing; when you back
up a user’s home directory, you’ll want to retain their permissions. In addition, you should retain as
much metadata as you can, including things like timestamps. Let’s try another variation of rsync. Don’t
worry about the fact that /backup already has a copy of the myuser home directory from our previous
backup. Let’s perform the backup again, but this time, we’ll use the -a option:

sudo rsync -a /home/myuser /backup

This time, we replaced the -r option with -a (archive), which retains as much metadata as possible
(in most cases, it should make everything an exact copy). What you should notice now is that the
permissions within the backup match the permissions within the user’s home directory we copied from.
The timestamps of the files will now match as well. This works because whenever rsync runs, it will
copy what’s different from the last time it ran. The files from our first backup were already there, but
the permissions were wrong. When we ran the second command, rsync only needed to copy what was
different, so it applied the correct permissions to the files. If any new files were added to the source
directory since we last ran the command, the new or updated files would be copied over as well.

The archive mode (the -a option that we used with the previous command) is actually very popular;
you’ll probably see it a lot during your travels. The -a option is actually a wrapper option that includes
the following options all at the same time:

-rlptgoD

If you’re curious about what each of these options do, consult the man page for rsync for more detailed
information. In summary, the -r option copies data recursively (which we already know), the -l option
copies symbolic links, -p preserves permissions, -g preserves group ownership, -o preserves the
owner, and -D preserves device files. If you put those options together, we get -rlptgoD. Therefore,
-a is actually equal to -rlptgoD. I find -a easier to remember.

The archive mode is great and all, but wouldn’t it be nice to be able to watch what rsync is up to when
it runs? Add the -v option and try the command again:

sudo rsync -av /home/myuser /backup

This time, rsync will display on your terminal what it’s doing as it runs (-v activates verbose mode).
This is actually one of my favorite variations of the rsync command, as I like to copy everything and
retain all the metadata, as well as watch what rsync is doing as it works.

Sharing and Transferring Files260

What if I told you that rsync supports SSH by default? It’s true! Using rsync, you can easily copy data
from one node to another, even over SSH. The same options apply, so you don’t actually have to do
anything different other than point rsync to the other server, rather than to another directory on
your local server:

sudo rsync -av /home/myuser admin@192.168.1.5:/backup

With this example, I’m copying the home directory for myuser to the /backup directory on server
192.168.1.5. I’m connecting to the other server as the admin user. Make sure you change the user
account and IP address accordingly, and also make sure the user account you use has access to the
/backup directory. When you run this command, you should get prompted for the SSH password as
you would when using plain SSH to connect to the server. After the connection is established, the files
will be copied to the target server and directory.

Now, we’ll get into some even cooler examples (some of which are potentially destructive), and we
probably won’t want to work with an actual home directory for these, unless it’s a test account and you
don’t care about its contents. As I’ve mentioned before, you should have some test files to play with.
When practicing, simply replace my directories with yours. Here’s another variation worth trying:

sudo rsync -av --delete /src /target

Now I’m introducing you to the --delete option. This option allows you to synchronize two directories.
Let me explain why this is important. With every rsync example up until now, we’ve been copying files
from point A to point B, but we weren’t deleting anything. For example, let’s say you’ve already used
rsync to copy contents from point A to point B. Then, you delete some files from point A. When you
use rsync to copy files from point A to point B again, the files you deleted in point A won’t be deleted
in point B. They’ll still be there. This is because by default, rsync copies data between two locations,
but it doesn’t remove anything. With the --delete option, you’re effectively synchronizing the two
points, thus you’re telling rsync to make them the same by allowing it to delete files in the target that
are no longer in the source.

Next, we’ll add the -b (backup) option:

sudo rsync -avb --delete /src /target

This one is particularly useful. Normally, when a file is updated on /src and then copied over to
/target, the copy on /target is overwritten with the new version. But what if you don’t want any files
to be replaced? The -b option renames files on the target that are being overwritten, so you’ll still have
the original file. If you add the --backup-dir option, things get really interesting:

sudo rsync -avb --delete --backup-dir=/backup/incremental /src /target

Now, we’re copying files from /src to /target as we were before, but we’re now sending replaced
files to the /backup/incremental directory. This means that when a file is going to be replaced on
the target, the original file will be copied to /backup/incremental. This works because we used the
-b option (backup) but we also used the --backup-dir option, which means that the replaced files
won’t be renamed; they’ll simply be moved to the designated directory. This allows us to effectively
perform incremental backups.

Chapter 12 261

Building on our previous example, we can use the Bash shell itself to make incremental backups work
even better. Consider these commands:

CURDATE=$(date +%m-%d-%Y)

sudo rsync -avb --delete --backup-dir=/backup/incremental/$CURDATE /src /target

With this example, we grab the current date and store it in a variable (CURDATE). In the rsync portion
of the command, we use that variable for the --backup-dir option. This will copy the replaced files
to a backup directory named after the date the command was run. Basically, if today’s date was
08-17-2022, the resulting command would be the same as if we had run the following:

sudo rsync -avb --delete --backup-dir=/backup/incremental/08-17-2022 /src /
target

Hopefully, you can see how flexible rsync is and how it can be used to not only copy files between
directories and/or nodes, but also to serve as a backup solution as well (assuming you have a remote
destination to copy files to). The best part is that this is only the beginning. If you consult the man
page for rsync, you’ll see that there are a lot of options you can use to customize it even further. Give
it some practice, and you should get the hang of it in no time.

Transferring files with SCP
A useful alternative to rsync is the Secure Copy (SCP) utility, which comes bundled with the OpenSSH
client. It allows you to quickly copy files from one node to another. While rsync also allows you to
copy files to other network nodes via SSH, SCP is more practical for one-off tasks; rsync is geared
toward more complex jobs. If your goal is to send a single file or a small number of files to another
machine, SCP is a great tool you can use to get the job done. If nothing else, it’s yet another item for
your administration toolbox. To utilize SCP, we’ll use the scp command. Since you most likely already
have the OpenSSH client installed, you should already have the scp command available. If you execute
which scp, you should receive the following output:

/usr/bin/scp

If you don’t see any output, make sure that the openssh-client package is installed.

Using SCP is very similar in nature to rsync. The command requires a source, a target, and a filename.
To transfer a single file from your local machine to another, the resulting command would look similar
to the following:

scp myfile.txt jdoe@192.168.1.50:/home/jdoe

With this example, we’re copying the myfile.txt file (which is located in our current working directory)
to a server located at 192.168.1.50. If the target server is recognized by DNS, we could’ve used the
DNS name instead of the IP address. The command will connect to the server as user jdoe and place
the file into that user’s home directory. Actually, we can shorten that command a bit:

scp myfile.txt jdoe@192.168.1.50:

Sharing and Transferring Files262

Notice that I removed the target path, which was /home/jdoe. I’m able to omit the path to the target,
since the home directory is assumed if you don’t give the scp command a target path. Therefore, the
myfile.txt file will end up in /home/jdoe whether or not I included the path to the home directory
explicitly. If I wanted to copy the file somewhere else, I would definitely need to call out the location.
Make sure you always include at least the colon when copying a file, since if you don’t include it, you’ll
end up copying the file to your current working directory instead of the target.

The scp command also works in reverse:

scp jdoe@192.168.1.50:myfile.txt .

With this example, we’re assuming that myfile.txt is located in the home directory for the user
jdoe. This command will copy that file to the current working directory of our local machine, since
I designated the local path as a single period (which corresponds to our current working directory).
Using scp in reverse isn’t always practical, since you have to already know where the desired file is
stored on the target before transferring it.

With our previous scp examples, we’ve only been copying a single file. If we want to transfer or
download an entire directory and its contents, we will need to use the -r option, which allows us to
do a recursive copy:

scp -r /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:downloads

With this example, we’re copying the local folder /home/jdoe/downloads/linux_iso to remote machine
192.168.1.50. Since we used the -r option, scp will transfer the linux_iso folder and all of its contents.
At the remote end, we’re again connecting via the user jdoe. Notice that the target path is simply
downloads. Since scp defaults to the user’s home directory, this will copy the linux_iso directory from
the source machine to the target machine under the /home/jdoe/downloads directory. The following
command would’ve had the exact same result:

scp -r /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:/home/jdoe/downloads

The home directory is not the only assumption the scp command makes. It also assumes that SSH is
listening on port 22 on the remote machine. Since it’s possible to change the SSH port on a server to
something else, port 22 may or may not be what’s in use. If you need to designate a different port for
scp to use, use the -P option:

scp -P 2222 -r /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:downloads

With that example, we’re connecting to the remote machine via port 2222. If you’ve configured SSH
to listen on a different port, change the number accordingly.

Although port 22 is always the default for OpenSSH, it’s common for some administrators to change
it to something else. While changing the SSH port doesn’t add a great deal of benefit in regard to
security (an intensive port scan will still find your SSH daemon), it’s a relatively easy change to make,
and making it even just a little bit harder to find is beneficial. We’ll discuss this further in Chapter 21,
Securing Your Server.

Chapter 12 263

Like most commands in the Linux world, the scp command supports verbose mode. If you want to
see how the scp command progresses as it copies multiple files, add the -v option:

scp -rv /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:downloads

Well, there you have it. The scp command isn’t overly complex or advanced, but it’s really great for
situations in which you want to perform a one-time copy of a file from one node to another. Since it
copies files over SSH, you benefit from its security, and it also integrates well with your existing SSH
configuration. An example of this integration is the fact that scp recognizes your ~/.ssh/config file
(if you have one), so you can shorten the command even further. Go ahead and practice with it a bit,
and in the next section, we’ll go over yet another trick that OpenSSH has up its sleeve.

Summary
In this chapter, we explored multiple ways of accessing remote resources. Just about every network
has a central location for storing files, and we explored two ways of accomplishing this with NFS and
Samba. Both NFS and Samba have their place in the data center and are very useful ways in which we
can make resources on a server available to our users who need to access them. We also talked about
rsync and scp, two great utilities for transferring data without needing to set up a permanent share.

Next up is Chapter 13, Managing Databases. Now that we have all kinds of useful services running on
our Ubuntu Server network, it’s only fitting that we take a look at serving databases as well. Specifically,
we’ll look at MariaDB. See you there!

Relevant videos
•	 Tutorial for scp: https://linux.video/scp
•	 Backing up a Linux server with rsync: https://linux.video/rsync-backup
•	 Transferring files with rsync: https://linux.video/rsync-transfer

Further reading
•	 Ubuntu rsync documentation: https://learnlinux.link/u-rsync
•	 Ubuntu Samba documentation: https://learnlinux.link/u-smb
•	 Service – NFS (contains additional information on NFS changes in 22.04):

https://learnlinux.link/u-nfs-1

•	 Ubuntu NFS documentation: https://learnlinux.link/u-nfs-2
•	 Active Directory Integration: https://learnlinux.link/u-ad

https://linux.video/scp
https://linux.video/rsync-backup
https://linux.video/rsync-transfer
https://learnlinux.link/u-rsync
https://learnlinux.link/u-smb
https://learnlinux.link/u-nfs-1
https://learnlinux.link/u-nfs-2
https://learnlinux.link/u-ad

Sharing and Transferring Files264

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

13
Managing Databases

The Linux platform has long been a very popular choice for hosting databases. Given the fact that
databases power a large majority of popular websites across the internet nowadays, this is a very
important role for servers to fill. Ubuntu Server is also a very popular choice for this purpose, as its
stability is a major benefit to the hosting community. This time around, we’ll take a look at MariaDB,
a popular fork of MySQL. The goal won’t be to provide a full walkthrough of MySQL’s syntax (as that
would be a full book in and of itself), but we’ll focus on setting up and maintaining database servers
utilizing MariaDB, and we’ll even go over how to set up a primary/secondary relationship between
them. If you already have a firm understanding of how to architect databases, you’ll still benefit from
this chapter as we’ll be discussing Ubuntu’s implementation of MariaDB in particular, which has its
configuration organized a bit differently than in other platforms.

As we work through setting up our very own MariaDB server, we will cover the following topics:

•	 Preparations for setting up a database server
•	 Installing MariaDB
•	 Understanding the MariaDB configuration files
•	 Managing MariaDB databases
•	 Setting up a secondary database server

As with setting up any server for a particular purpose, we should first think about the goal and plan
accordingly. So in the next section, we’ll talk about some of the higher-level details to consider while
preparing a database server.

Preparations for setting up a database server
Before we get started with setting up our database server, there are a few odds and ends to get out of
the way. As we go through this chapter, we’ll set up a basic database server using MariaDB. I’m sure
more than a few of my readers are familiar with MySQL. MySQL is a tried and true solution that is still
in use in many data centers today, and that will probably continue to be the case for the foreseeable
future. There’s a good chance that a popular website or two that you regularly visit utilizes it on the
backend. So, you may be wondering then, why not go over that instead of MariaDB?

Managing Databases266

There are two reasons why this book will focus on MariaDB. First, the majority of the Linux commu-
nity is migrating over to it (more on that later), and it’s also a drop-in replacement for MySQL. This
means that any databases or scripts you’ve already written for MySQL will most likely work just fine
with MariaDB, barring some edge cases. In reverse, the commands you practice with MariaDB should
also function as you would expect on a MySQL server. This is great, considering that many MySQL
installations are still in use in many data centers, and you’ll be able to support those too. For the most
part, there are very few reasons to stick with MySQL when your existing infrastructure can be ported
over to MariaDB, and that’s the direction the Linux community is headed toward anyway.

Why the change? A while back, various distributions of Linux started switching to MariaDB from MySQL.
Red Hat is one such example; it switched to MariaDB back in version 7 of Red Hat Enterprise Linux.
Other distributions, such as Arch Linux and Fedora, went down the same route. This was partly due
to a lack of trust in Oracle, the company that now owns MySQL. When Oracle became the owner of
MySQL, there were some serious questions raised in the open source community regarding the future
of MySQL as well as its licensing. I’m not going to get into any speculation about Oracle, the future
of MySQL, or any politics regarding its future since it’s not relevant to this book (and I’m not a fan of
corporate drama). The fact, though, is that many distributions are moving toward MariaDB, and that
seems to be the future. It’s a great technology, and I definitely recommend it over MySQL for several
reasons that are unrelated to current controversies.

MariaDB is more than just a fork of MySQL. On its own, it’s a very competent database server. The fact
that your existing MySQL implementations should be compatible with it eases adoption. But more
than that, MariaDB makes some very worthwhile changes and improvements to MySQL that will only
benefit you.

Everything you love about MySQL can be found in MariaDB, plus some cutting-edge features that are
exclusive to it. But even better is the fact that MariaDB features additional clustering options that are
leaps and bounds better and more efficient than plain old MySQL.

So, hopefully I’ve sold you on the value of MariaDB. Ultimately, whether or not you actually use it will
depend on the needs of your organization. I’ve seen some organizations opt to stick with MySQL, if
only for the sole reason that it’s what they know. I can understand that if a solution has proven itself
in your data center, there’s really no reason to change if your database stack is working perfectly fine
the way it is. To that end, while I’ll be going over utilizing MariaDB, it’s possible that the examples
may work for MySQL as well. If in doubt, MariaDB is recommended for the examples in this chapter.

With regard to your server, a good implementation plan is key (as always). I won’t spend too much time
on this aspect, since by now I know you’ve probably been through a paragraph or two in this book
where I’ve mentioned the importance of redundancy (and I’m sure I’ll mention redundancy again a
few more times before the last page). At this point, you’re probably just setting up a lab environment
or test server on which to practice these concepts before using your newfound skills in production.
But when you do eventually roll out a database server into production, it’s crucial to plan for long-term
stability. Database servers should be regularly backed up, redundant (there I go again), and regularly
patched. Later on in this chapter, I’ll walk you through setting up a secondary database server, which
will take care of the redundancy part.

Chapter 13 267

However, that’s not enough on its own, as regular backups are important. There are many utilities
that allow you to do this, such as mysqldump, and you can also take snapshots of your virtual machine
(assuming you’re not using a physical server). Both solutions are valid, depending on your environ-
ment. As someone who has lost an entire workday attempting to resurrect a fallen database server for
a client (of which they had no backups or redundancy), my goal is simply to spare you that headache.

As far as how many resources a database server needs, that solely depends on your environment. Mari-
aDB itself does not take up a huge amount of resources, but as with MySQL, your usage is dependent
on your workload. Either you’ll have a few dozen clients connecting, or a few thousand, or more. But
one recommendation I’ll definitely make is to use Logical Volume Manager (LVM) for the partition
that houses your database files. This will certainly spare you grief in the long run. As we’ve discussed
in Chapter 9, Managing Storage Volumes, LVM makes it very simple to expand a filesystem, especially
on a virtual machine.

If your database server is on a virtual machine, you can add a disk to the volume group and expand it
if your database partition starts to get full, and your customers will never notice there was ever about
to be a problem. Without LVM, you’ll need to shut down the server, add a new volume, rsync your
database server files over to the new location, and then bring up the server. Depending on the size of
your database, this situation can span hours. Do yourself a favor, use LVM.

With that out of the way, we can begin setting up MariaDB. For learning and testing purposes, you can
use pretty much any server you’d like: physical, virtual, or a Virtual Private Server (VPS). Once you’re
ready, let’s move on and we’ll get started!

Installing MariaDB
Now we’ve come to the fun part, installing MariaDB. To get the ball rolling, we’ll install the mariadb-
server package:

sudo apt install mariadb-server

If your organization prefers to stick with MySQL, the package to install is mysql-server instead:

sudo apt install mysql-server

Although it might be tempting to try out both MySQL and MariaDB to compare and contrast their
differences, I don’t recommend switching from MariaDB to MySQL (or vice versa) on the same server.
I’ve seen some very strange configuration issues occur on servers that had one installed and then
were switched to the other (even after wiping the configuration). For the most part, it’s best to pick
one solution per server and stick with it. As a general rule, MySQL should be used if you have legacy
databases to support. For brand-new installations, go with MariaDB.

After you install the mariadb-server package, check to make sure the service started and is enabled.
By default, it should already be running:

systemctl status mariadb

Managing Databases268

Next, we’ll want to add some security to our MariaDB installation (even though we’re using MariaDB,
the name of the following command hasn’t been updated and still includes mysql in the name):

sudo mysql_secure_installation

At this point, we haven’t set a root password yet, so go ahead and just press Enter when the script
asks for it. This script will ask you additional questions. You will be asked if you’d like to switch to
unix_socket authentication. The default answer for this question is yes, but I recommend answering
no to this question. This will ensure password authentication is used, which is going to be better for
compatibility. There is a security benefit by switching to unix_socket authentication, but for our
purposes password authentication will suffice. If you decide to dive into the subject of database man-
agement, switching to unix_socket authentication might be better in the future.

Continuing, the mysql_secure_installation script will ask you if you want to set a root password.
The root user for MariaDB is not the same as the root user on your system, and you definitely should
create a password for it. So when this comes up, press y to tell it you want to create a root password,
then enter that password twice.

After setting the root password, the script will ask you whether you’d like to remove anonymous users,
and also disallow remote access to the database server. You should answer yes to both. The latter is
especially important, as there’s almost never a situation in which allowing public access to MySQL/
MariaDB is a good idea. Even if you’re hosting a website for external users, those users only need ac-
cess to the website, not the database server. The website itself will interface with the database locally
as needed; an external connection wouldn’t be necessary. (If you have a standalone database server
that’s not publicly accessible to the internet, then you will want to answer yes here – just make sure
that the database server can’t be reached publicly). Continuing for the most part, just answer yes to
everything the script asks you (unless you have a good reason not to).

The entire process after executing mysql_secure_installation looks like the following, and I’ve
included the responses I recommend for each (“y” for yes, “n” for no):

Enter current password for root (enter for none):
Switch to unix_socket authentication [Y/n] n
Set root password? [Y/n] y
Remove anonymous users? [Y/n] y
Disallow root login remotely? [Y/n] y
Remove test database and access to it? [Y/n] y
Reload privilege tables now? [Y/n] y

At this point, we officially have a fully functional database server. The previous command allowed
us to apply some basic security, and our database server is now available to us. To connect to it and
manage it, we’ll use the mariadb command to access the MariaDB shell, where we’ll enter commands
to manage our database(s). There are actually two methods to connect to this shell. The first method
is by simply using the mariadb command with sudo:

sudo mariadb

Chapter 13 269

This particular command works because if you use the mariadb command as root (we used sudo in
this example) the password is bypassed. In fact, we didn’t even enter the username either; root is
assumed if you are attempting to access MariaDB with sudo. This is by far the simplest way to connect.
However, some of you may be accustomed to a different method of authentication if you’ve used other
Linux distributions: entering the username and password. In that case, the command will look like
this (it won’t work by default though):

mariadb -u root -p

When that command works correctly, it will ask you for your root password and then let you into
the shell.

It’s recommended to create a different user in order to manage your MariaDB installation, as logging
in as root is not recommended in most cases. We’ll be creating additional users later on in this chapter,
but for now, the root account is the only one we have available. It’s common practice to use the root
account to do the initial setup, and then create a different user for administrative purposes going for-
ward. However, the root account is still often used for server maintenance, so use your best judgment.

So, now that we have access to the MariaDB shell, what can we do with it? The commands we’ll execute
on this shell allow us to do things such as create and delete databases and users, add tables, and so
on. The mariadb command comes from the mariadb-client-10.6 package, which was installed as
a dependency when we installed mariadb-server. Entering the mariadb command by itself with no
options connects us to the database server on our local machine. This utility also lets us connect to
external database servers to manage them remotely, which we’ll discuss later.

The MariaDB shell prompt will look like this:

MariaDB [(none)]>

We’ll get into MariaDB commands and user management later. For now, you can exit the shell. To exit,
you can type exit and press Enter or press Ctrl + d on your keyboard.

Now, our MariaDB server is ready to go. While you can now move on to the next section, you might
want to consider setting up another MariaDB server by following these steps on another machine. If
you have room for another virtual machine, it might be a good idea for you to get this out of the way
now, since we’ll be setting up a secondary database server later.

Understanding the MariaDB configuration files
Now that we have MariaDB installed, let’s take a quick look at how its configuration is stored. While
we won’t be changing much of the configuration in this chapter (aside from adding parameters related
to setting up a secondary database instance), it’s a good idea to know where to find the configuration,
since you’ll likely be asked by a developer to tune the database configuration at some point in your
career. This may involve changing the storage engine, buffer sizes, or countless other settings. A full
walkthrough on performance tuning is outside the scope of this book, but it will be helpful to know
how the settings for MariaDB are read, since Ubuntu’s implementation is fairly unique.

Managing Databases270

The configuration files for MariaDB are stored in the /etc/mysql directory. In that directory, you’ll
see the following files by default:

debian.cnf
debian-start
mariadb.cnf
my.cnf
my.cnf.fallback

You’ll also see the following directories:

conf.d
mariadb.conf.d

The configuration file that MariaDB reads on startup is the /etc/mysql/mariadb.cnf file. This is where
you’ll begin perusing when you want to configure the daemon, but we’ll get to that soon. The /etc/
mysql/debian-start file is actually a script that sets default values for MariaDB when it starts, such
as setting some environment variables. It also defines a task that is executed if the mariadb process
dies or exits, and allows it to check for crashed tables.

The debian-start script also loads the /etc/mysql/debian.cnf file, which sets some client settings
for the mariadb daemon. Here’s a list of values from that file:

[client]
host = localhost
user = root
[mysql_upgrade]
host = localhost
user = root

The defaults for these values are fine and there’s rarely a reason to change them. Essentially, the file
sets the default user, host, and socket location. If you’ve used MySQL before on other platforms, you
may have seen many of those settings in the /etc/my.cnf file, which is typically the standard file for
the mariadb daemon. With MariaDB on Ubuntu Server, you can see that the default layout of the files
was changed considerably.

The /etc/mysql/mariadb.cnf file sets the global defaults for MariaDB. However, in Ubuntu’s imple-
mentation, this default file just includes configuration files from the /etc/mysql/conf.d and /etc/
mysql/mariadb.conf.d directories. Within those directories, there are additional files ending with the
.cnf extension. Many of these files contain default configuration values that would normally be found
in a single file, but Ubuntu’s implementation modularizes these settings into separate files instead.
For our purposes in this book, we’ll be editing the /etc/mysql/conf.d/mysql.cnf file when it is time
to set up a relationship between primary and secondary servers.

Chapter 13 271

The other configuration files aren’t relevant for the content of this book, and their current values
are more than sufficient for what we need. When it comes to performance tuning, you may consider
creating a new configuration file ending with the .cnf extension, with specific tuning values as pro-
vided by the documentation of a software package you want to run that interfaces with a database, or
requirements given to you by a developer.

For additional information on how these configuration files are read, you can refer to the /etc/mysql/
mariadb.cnf file, which includes some helpful content at the top of the file that details the order in
which these configuration files are read, as well as their purpose. Here’s an excerpt of these comments
from that file:

The MariaDB/MySQL tools read configuration files in the following order:
1. "/etc/mysql/mariadb.cnf" (this file) to set global defaults,
2. "/etc/mysql/conf.d/*.cnf" to set global options.
3. "/etc/mysql/mariadb.conf.d/*.cnf" to set MariaDB-only options.
4. "~/.my.cnf" to set user-specific options.

As we can see, when MariaDB starts up, it first reads the /etc/mysql/mariadb.cnf file, followed by
.cnf files stored within the /etc/mysql/conf.d directory, then the .cnf files stored within the /etc/
mysql/mariadb.conf.d directory, followed by any user-specific settings stored within a .my.cnf file
that may be present in the user’s home directory.

With Ubuntu’s implementation, when the /etc/mysql/mariadb.cnf file is read during startup, the
process will immediately scan the contents of /etc/mysql/conf.d and /etc/mysql/mariadb.conf.d,
because the /etc/mysql/mariadb.cnf file contains the following lines:

!includedir /etc/mysql/conf.d/
!includedir /etc/mysql/mariadb.conf.d/

As you can see, the order that the configuration files are checked is set to the mariadb.cnf file first,
followed by the /etc/mysql/conf.d and /etc/mysql/mariadb.conf.d directories.

This may be a bit confusing at first, because the default configuration for MariaDB in Ubuntu Server
essentially consists of files that redirect to other files. But the main takeaway is that any configuration
changes you make that are not exclusive to MariaDB (basically, configuration that’s compatible with
MySQL itself) should be placed in a configuration file that ends with the .cnf extension, and then
stored in the /etc/mysql/conf.d directory.

If the configuration you’re wanting to add is for a feature exclusive to MariaDB (but not compatible with
MySQL itself), the configuration file should be placed in the /etc/mysql/mariadb.conf.d directory
instead. For our purposes, we’ll be editing the /etc/mysql/conf.d/mysql.cnf file when it comes time
to set up our primary/secondary replication, since the method we’ll be using is not specific to MariaDB.

In this section, we discussed MariaDB configuration and how it differs from its implementation in
other platforms. The way the configuration files are presented is not the only difference in Ubuntu’s
implementation of MariaDB; there are other differences as well. In the next section, we’ll take a look
at a few additional ways in which Ubuntu’s implementation differs from implementations in other
distributions of Linux.

Managing Databases272

Managing MariaDB databases
Now that our MariaDB server is up and running, we can finally look into managing it. In this section,
I’ll demonstrate how to connect to a database server using the mariadb command, which will allow
us to create databases, remove (drop) them, and also manage users and permissions.

To begin, we’ll need to create an administrative user for MariaDB. The root account already exists as
the default administrative user, but it’s not a good idea to allow others to use that account. Instead, it
makes more sense to create an administrative account separate from root for managing our databas-
es. Therefore, we’ll begin our discussion on managing databases with user management. The users
we’ll manage within MariaDB are specific to MariaDB; these are separate from the user accounts on
the actual system.

To manage and interact with databases, we’ll need to enter the MariaDB shell, and the same goes for
when it comes to creating database users. Right now, since we only have the root account, we’ll need
to access the current MariaDB implementation as root in order to set up our administrative user. If
you’ve set up standard authentication, as we discussed earlier in this chapter, you can access the
prompt using the standard means:

mariadb -u root -p

Or, more simply:

sudo mariadb

Once inside the MariaDB shell, your prompt will change to the following:

MariaDB [(none)]>

Now, we can create our new administrative user. I’ll call mine admin in my examples, but you can
use whatever name you’d like. In a company I used to work for, we used the username velociraptor
as our administrative user on our servers, since nothing is more powerful than a velociraptor (and
they can open doors). Feel free to use a clever name, but just make sure you remember it. Using a
non-standard username has the added benefit of security by obscurity; the name wouldn’t be what
an intruder would expect.

Here’s the command to create a new user in MariaDB (replace the username and password in the
command with your desired credentials):

CREATE USER 'admin'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

When it comes to MySQL syntax, the commands are not case sensitive (though the data parameters
are), but it’s common to capitalize instructions to separate them from data. During the remainder of
this chapter, we’ll be executing some commands within the Linux shell, and others within the MariaDB
shell. I’ll let you know which shell each command needs to be executed in as we come to them, but if
you are confused, just keep in mind that MariaDB commands are the only ones that are capitalized.

Chapter 13 273

With the preceding commands, we’re creating the admin user and restricting it to localhost. This is
important because we don’t want to open up the admin account to the world. We’re also flushing priv-
ileges, which causes MariaDB to reload its privileges information. The FLUSH PRIVILEGES command
should be run every time you add a user or modify permissions. I may not always mention the need
to run this command, so you might want to make a mental note of it and make it a habit now.

As I mentioned, the previous command created the admin user but is only allowing it to connect from
localhost. This means that an administrator would first need to log in to the server itself before they
would be able to log in to MariaDB with the admin account. As an example of the same command
(but allowing remote login from any other location), the following command is a variation that will
do just that:

CREATE USER 'admin'@'%' IDENTIFIED BY 'password';

Can you see the percent symbol (%) in place of localhost? That basically means everywhere, which
indicates we’re creating a user that can be logged into from any source (even external nodes). However,
by restricting our user to localhost with the first command, we’re making our server just a bit more
secure. You can also restrict access to particular networks, which is desired if you really do need to
allow a database administrator access to the server remotely:

CREATE USER 'admin'@'192.168.1.%' IDENTIFIED BY 'password';

That’s a little better, but not as secure as limiting login to localhost. As you can see, the % character is
basically a wildcard, so you can restrict access to needing to be from a specific IP or even a particular
subnet.

So far, all we did is create a new user; we have yet to give this user any permissions. We can create a
set of permissions (also known as grants) with the GRANT command. First, let’s give our admin user
full access to the database server when called from localhost:

GRANT ALL PRIVILEGES ON *.* TO 'admin'@'localhost';
FLUSH PRIVILEGES;

Now, we have an administrative user we can use to manage our server’s databases. We can use this
account for managing our server instead of the root account. Any logged-on Linux user will be able to
access the database server and manage it, provided they know the password. To access the MariaDB
shell as the admin user that we created, the following command will do the trick:

mariadb -u admin -p

After entering the password, you’ll be logged into MariaDB as admin.

In addition, you can actually provide the password to the mariadb command without needing to be
prompted for it:

mariadb -u admin -p<password>

Managing Databases274

Notice that there is no space in between the -p option and the actual password (though it’s common to
put a space between the -u option and the username). As useful as it is to provide the username and
password in one shot, I don’t recommend that you ever use that method. This is because any Linux
command you type is saved in the history, so anyone can view your command history and they’ll see
the password in plain text. I only mention it here because I find that many administrators do this, even
though they shouldn’t. At least now you’re aware of this method and why it’s wrong.

The admin account we created is only intended for system administrators who need to manage databases
on the server. The password for this account should not be given to anyone other than staff employees
or administrators that absolutely need it. Additional users can be added to the MariaDB server, each
with differing levels of access. Keep in mind that our admin account can manage databases but not
users. This is important, as you probably shouldn’t allow anyone other than server administrators to
create users. You’ll still need to log in as root to manage user permissions.

It may also be useful to create a read-only user for MariaDB for employees who need to be able to read
data but not make changes. Back in the MariaDB shell (as root), we can issue the following command
to effectively create a read-only user:

GRANT SELECT ON *.* TO 'readonlyuser'@'localhost' IDENTIFIED BY 'password';

With this command (and flushing privileges afterward), we’ve done two things. First, we’ve created a
new user and also set up grants for that user with a single command. Second, we’ve created a read-only
user that can view databases but not manage them (we’ve restricted the permissions to SELECT). This
is more secure. In practice, it’s better to restrict a read-only user to a specific database. This is typical
in a development environment, where you’ll have an application that connects to a database over a
network and needs to read information from it. We’ll go over this scenario soon.

Next, let’s create a database. At the MariaDB prompt, execute:

CREATE DATABASE mysampledb;

That was easy. We should now have a database on our server named mysampledb. To list all databases on
our server (and confirm our database was created properly), we can execute the following command:

SHOW DATABASES;

This will produce an output like the following:

Chapter 13 275

Figure 13.1: Listing MariaDB databases

The output will show some system databases that were created for us, but our new database should
be listed among them. We can also list users just as easily:

SELECT HOST, USER, PASSWORD FROM mysql.user;

Entering this command will result in something similar to the following output:

Figure 13.2: Listing MariaDB users

Managing Databases276

In a typical scenario, when installing an application that needs its own database, we’ll create the da-
tabase and then a user for that database. We’ll normally want to give that user permission to only that
database, with only as much permission as required to allow it to function properly. We’ve already
created the mysampledb database, so if we want to create a user with read-only access to it, we can do
so with the following command:

GRANT SELECT ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY 'password';

With one command, we’re not only creating the user appuser, but we’re also setting a password for it,
in addition to allowing it to have SELECT permissions on the mysampledb database. This is equivalent
to read-only access. If our user needed full access, we could use the following instead:

GRANT ALL ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY 'password';

To double-check that we’ve executed the command correctly, we can use this command to show the
grants for a particular user:

SHOW GRANTS FOR 'appuser'@'localhost';

Now, our appuser has full access but only to the mysampledb database. Of course, we should only pro-
vide full access to the database if absolutely necessary. We can also provide additional permissions,
such as DELETE (whether or not the user has permission to delete rows from database tables), CREATE
(which controls whether the user can add rows to the database), INSERT (controls whether or not the
user can add new rows to a table), SELECT (allows the user to read information from the database), DROP
(allows the user to fully remove a database), and ALL (which gives the user everything). There are other
permissions we can grant or deny; check the MariaDB documentation for more details. The types of
permissions you’ll need to grant to a user to satisfy the application you’re installing will depend on
the documentation for that software. Always refer to the installation instructions for the application
you’re attempting to install to determine which permissions are required for it to run.

If you’d like to remove user access, you can use the following command to do so (substituting myuser
with the user account you wish to remove):

DROP USER 'myuser'@'localhost'

Now, let’s go back to databases. Now that we’ve created the mysampledb database, what can we do
with it? We’ll add tables and rows, of course! A database is useless without actual data, so we can
work through some examples of adding data to our database to see how this works. First, log in to the
MariaDB shell as a user with full privileges to the mysampledb database. Now, we can have some fun
and modify the contents. Here are some examples you can follow:

USE mysampledb;

The USE command allows us to select a database we want to work with. The MariaDB prompt will
change from MariaDB [(none)]> to MariaDB [mysampledb]>. This is very useful, as the MariaDB
prompt changes to indicate which database we are currently working with. We basically just told
MariaDB that for all of the commands we’re about to execute, we would like them to be issued against
the mysampledb database.

Chapter 13 277

Now, we can CREATE a table in our database. It doesn’t matter what you call yours, since we’re just
practicing. I’ll call mine Employees:

CREATE TABLE Employees (Name char(15), Age int(3), Occupation char(15));

We can verify this command by showing the columns in the database, to ensure it shows what we expect:

SHOW COLUMNS IN Employees;

With this command, we’ve created a table named Employees that has three columns (Name, Age, and
Occupation). To add new data to this table, we can use the following INSERT command:

INSERT INTO Employees VALUES ('Joe Smith', '26', 'Ninja');

The example INSERT command adds a new employee to our Employees table. When we use INSERT,
we insert all the data for each of the columns. Here, we have an employee named Joe, who is 26 years
old and whose occupation is a Ninja. Feel free to add additional employees; all you would need to do
is formulate additional INSERT statements and provide data for each of the three fields. When you’re
done, you can use the following command to show all of the data in this table:

SELECT * FROM Employees;

Figure 13.3: Listing database rows from a table

To remove an entry, the following command will do what we need:

DELETE FROM Employees WHERE Name = 'Joe Smith';

Basically, we’re using the DELETE FROM command, giving the name of the table we wish to delete from
(Employees, in this case), and then using WHERE to provide some search criteria for narrowing down
our command.

The DROP command allows us to delete tables or entire databases, and it should be used with care. I
don’t actually recommend you delete the database we just created, since we’ll use it for additional
examples. But if you really wanted to drop the Employees table, you could use:

DROP TABLE Employees;

Managing Databases278

Or use this to drop the entire database:

DROP DATABASE mysampledb;

There is, of course, much more to MariaDB and its MySQL syntax than the samples I have provided,
but this should be enough to get you through the examples in this book. As much as I would love to
give you a full walkthrough of the MySQL syntax, it would easily push this chapter beyond a reasonable
number of pages. If you’d like to push your skills beyond the samples of this chapter, there are great
books available that are dedicated to the subject.

Before I close this section though, I think it will be worthwhile for you to see how to back up and
restore your databases. To do this, we have the mysqldump command at our disposal. Its syntax is very
simple, as you’ll see.

First, exit the MariaDB shell and return to your standard Linux shell. Since we’ve already created an
admin user earlier in the chapter, we’ll use that user for the purposes of our backup:

mysqldump -u admin -p --databases mysampledb > mysampledb.sql

With this example, we’re using mysqldump to create a copy of the mysampledb database and storing
it in a file named mysampledb.sql. Since MariaDB requires us to log in, we authenticate to MariaDB
using the -u option with the username admin and the -p option, which will prompt us for a password.
The --databases option is necessary because, by default, mysqldump does not include the database
create statement . However, the --databases option forces this, which just makes it easier for you
to restore. Assuming that we were able to authenticate properly, the contents of the mysampledb da-
tabase will be dumped into the mysampledb.sql file. This export should happen very quickly, since
this database probably only contains a single table and a few rows. Larger production databases can
take hours to dump.

Restoring a backup is fairly simple. We can utilize the mariadb command with the backup file used
as a source of input:

sudo mariadb -u admin -p < mysampledb.sql

So, there you have it. The mysqldump command is definitely very handy in backing up databases. In
the next section, we’ll work through setting up a secondary database server.

Setting up a secondary database server
Redundancy is an amazing thing. If a primary server fails for some reason, you can keep your appli-
cations running by having a secondary database server available in case the original meets its demise.
Of course, you can always create regular backups of your database servers and restore if necessary,
but it’s very hard to keep up with databases that are always changing, so backups have a tendency
to become stale quite fast. A secondary database server enables you to have a copy that is always up
to date. This doesn’t mean that you no longer need backups, but it does give you another option for
recovery when faced with a problem.

Chapter 13 279

The industry is moving away from terms like “Master” and “Slave” to describe a primary and sec-
ondary server. In this chapter and moving forward, we will use the terms “Primary” and “Secondary”
to describe the relationship of one main database server that replicates to another. Therefore, the
verbiage around our actions will use “primary” and “secondary,” even though the verbiage inside
Ubuntu 22.04 still uses the old terminology. Just keep in mind that the naming will likely switch to a
new naming scheme in the future.

At this point, we have one database server already. To set up a secondary database instance, all you
really need in order to begin the process is to set up another physical server or virtual machine and
install the mariadb-server package as we did earlier. If you’ve already set up two database servers as
recommended earlier in the chapter, you’re ready to begin. If not, feel free to spin up another virtual
machine and follow the process from the Installing MariaDB section, which covered the initial setup
of MariaDB. Go ahead and set up another server if you haven’t already done so. Of your two servers,
one should be designated as the primary and the other as the secondary, so make a note of the IP
addresses for each.

To begin, we’ll first start working on the primary. We’ll need to edit the /etc/mysql/conf.d/mysql.
cnf file on the server you wish to be the primary. Currently, the file contains just the following line:

[mysql]

Right underneath that, add a blank line and then the following code:

[mysqld]
log-bin
binlog-do-db=mysampledb
server-id=1

With this configuration, we’re first enabling binary logging, which is required for a primary/second-
ary server to function properly. Binary logs contain records of all database changes, which enables
a secondary database instance to reproduce changes made to the primary server. These binary logs
record changes made to a database, which will then be transferred to a secondary server.

Another configuration file that we’ll need to edit is /etc/mysql/mariadb.conf.d/50-server.cnf. In
this file, we have the following line:

bind-address = 127.0.0.1

With this default setting, the mysql daemon is only listening for connections on localhost (127.0.0.1),
which is a problem since we’ll need to connect to it from another machine (the secondary server).
Change this line to the following:

bind-address = 0.0.0.0

Next, we’ll need to access the MariaDB shell on the primary server and execute the following com-
mands:

GRANT REPLICATION SLAVE ON *.* to 'replicate'@'192.168.1.204' identified by
'password';

Managing Databases280

Here, we’re creating a replication user named replicate and allowing it to connect to our primary
server from the IP address 192.168.1.204. Be sure to change that IP to match the IP of your secondary
server, but you can also use a hostname identifier such as %.mydomain if you have a domain configured,
which is equivalent to allowing any hostname that ends with .mydomain. Also, we’re setting the pass-
word for this user to password, so feel free to customize that as well to fit your password requirements
(be sure to make a note of the password).

We should now restart the mariadb daemon so that the changes we’ve made to the mysql.cnf file
take effect:

sudo systemctl restart mariadb

Next, we’ll set up the secondary server. But before we do that, there’s a consideration to make now
that will possibly make the process easier on us. In a production environment, it’s very possible that
data is still being written to the primary server. The process of setting up a secondary server is much
easier if we don’t have to worry about the primary database changing while we set up the secondary.
The following command, when executed within the MariaDB shell, will lock the database and prevent
additional changes:

FLUSH TABLES WITH READ LOCK;

If you’re absolutely sure that no data is going to be written to the primary server, you can disregard
that step.

Next, we should utilize mysqldump to make sure that both the primary and the secondary servers
contain the same data before we start synchronizing them. The process is smoother if we begin with
them already synchronized, rather than trying to mirror the databases later. Using mysqldump as
we did in the previous section, create a dump of the primary server’s database and then import that
dump into the secondary. The easiest way to transfer the dump file is to use rsync or scp. Then, on
the secondary instance, use mariadb to import the file.

The command to back up the database on the primary server becomes the following:

mysqldump -u admin -p --databases mysampledb > mysampledb.sql

After transferring the mysampledb.sql file to the secondary server, you can import the backup into
the secondary server:

mariadb -u root -p < mysampledb.sql

Also on the secondary server, we’ll need to edit /etc/mysql/conf.d/mysql.cnf and then place the
following code at the end (make sure to add a blank line after [mysql]:

[mysqld]
server-id=2

Although it’s outside the scope of this book, you can set up more than just one secondary database
server. If you do, each will need a unique server-id.

Chapter 13 281

Make sure you restart the mariadb unit on the secondary server before continuing:

sudo systemctl restart mariadb

From the root MariaDB shell on your secondary server, enter the following command. Change the IP
address in the command accordingly:

CHANGE MASTER TO MASTER_HOST="192.168.1.184", MASTER_USER='replicate', MASTER_
PASSWORD='password';

Now that we’re finished configuring the synchronization, we can unlock the primary server’s tables.
On the primary server, execute the following command within the MariaDB shell:

UNLOCK TABLES;

Now, we can check the status of the secondary server to see whether or not it is running.

Within the secondary server’s MariaDB shell, execute the following command:

SHOW SLAVE STATUS \G;

Here, we’re adding \G, which changes the output to be displayed vertically instead of horizontally.

Assuming all went well, we should see the following line in the output:

Slave_IO_State: Waiting for master to send event

If the secondary server isn’t running (Slave_IO_State is blank), execute the following command:

START SLAVE;

Next, check the status of the secondary server process again to verify:

SHOW SLAVE STATUS \G;

From this point forward, any data you add to your database on the primary server should be replicated
to the secondary. To test, add a new record to the Employees table on the mysampledb database on the
primary server:

USE mysampledb;
INSERT INTO Employees VALUES ('Optimus Prime', '100', 'Transformer');

On the secondary server, check the same database and table for the new value to appear. It may take
a second or two:

USE mysampledb;
SELECT * FROM Employees;

If you see any errors in the Slave_IO_State line when you run SHOW SLAVE STATUS \G, or your
databases aren’t synchronizing properly, here are a few things you can try. First, make sure that the
primary database server is listening for connections on 0.0.0.0 port 3306.

Managing Databases282

To test this, run this variation of the ss command to see which port the mariadb process is listening
on (it’s listed as mysqld):

ss -tulpn | grep mysqld

The output should be similar to the following:

tcp LISTEN 0 80 0.0.0.0:3306
0.0.0.0:* users:(("mysqld",pid=9768,fd=23))

If you see that the service is listening on 127.0.0.1:3306 instead, that means it’s only accepting con-
nections from localhost. Earlier in this section, I mentioned changing the bind address in the /etc/
mysql/mariadb.conf.d/50-server.cnf file. Make sure you’ve already done that and restart mariadb.
During my tests, I’ve actually had one situation where the mariadb service became locked after I
made this change, and attempting to restart the process did nothing (I ended up having to reboot the
entire server, which is not typically something you’d have to do). Once the server came back up, it was
listening for connections from the network.

If you receive errors on the secondary server when you run SHOW SLAVE STATUS \G, with regards
to authentication, make sure you’ve run FLUSH PRIVILEGES on the primary server. Even if you have,
run it again to be sure. Also, double-check that you’re synchronizing with the correct username, IP
address, and password. For your convenience, here’s the command we ran on the primary server to
grant replication permissions:

GRANT REPLICATION SLAVE ON *.* to 'replicate'@'192.168.1.204' identified by
'password';
FLUSH PRIVILEGES

Here’s the command that we ran on the secondary server:

CHANGE MASTER TO MASTER_HOST="192.168.1.184", MASTER_USER='replicate', MASTER_
PASSWORD='password';

Finally, make sure that your primary database and the secondary database both contain the same
databases and tables. The primary server won’t be able to update a database on the secondary server if
it doesn’t exist there. Flip back to my example usage on mysqldump if you need a refresher. You should
only need to use mysqldump and import the database onto the secondary server once, since after you
get the replication going, any changes made to the database on the primary server should follow
over to the secondary. If you have any difficulties with the mysqldump command, you can manually
create mysampledb and the Employees table on the secondary server, which is really all it needs for
synchronization to start.

Synchronization should then begin within a minute, but you can execute STOP SLAVE, followed by
START SLAVE, on the secondary server to force it to try to synchronize again without waiting.

And that should be all there is to it. At this point, you should have fully functional primary and sec-
ondary database servers at your disposal. To get additional practice, try adding additional databases,
tables, and users, and insert new rows into your databases.

Chapter 13 283

It’s worth mentioning that the users we’ve created here will not be synced to the secondary server, so
you can use the commands we used earlier in this chapter to create users on the secondary server if
you wish for them to be present there.

Summary
Depending on your skill set, you’re either an administrator who is learning about SQL databases for
the first time, or you’re a seasoned veteran who is curious about how to implement a database server
with Ubuntu Server. In this chapter, we dove into Ubuntu’s implementation of this technology and
worked through setting up our own database server. We also worked through some examples of the
MariaDB syntax, such as creating databases, as well as setting up users and their grants. We also
worked through setting up primary and secondary servers for replication.

Database administration is a vast topic, and we’ve only scratched the surface here. Being able to
manage MySQL and MariaDB databases is a very sought-after skill for sure. If you haven’t worked with
these databases before, this chapter will serve as a good foundation for you to start your research.

In the next chapter, we’ll use our database server to act as a foundation for Nextcloud, which we will
set up as part of our look into setting up a web server. When you’ve finished practicing these database
concepts, head on over to Chapter 14, Serving Web Content, where we’ll journey into the world of web
hosting.

Further reading
•	 Configuring MariaDB with Option Files:

https://mariadb.com/kb/en/configuring-mariadb-with-option-files/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://mariadb.com/kb/en/configuring-mariadb-with-option-files/
https://packt.link/LWaZ0

14
Serving Web Content

The flexible nature of Ubuntu Server makes it an amazing platform on which to host your organization’s
web presence. In this chapter, we’ll take a look at Apache and NGINX, which make up the leading
web server software on the internet. We’ll go through installing, configuring, and extending both,
as well as securing them with Transport Layer Security (TLS). In addition, we’ll also take a look at
installing Nextcloud, which is a great solution for setting up your very own cloud environment for
your organization to use for collaboration and sharing files. As we work through concepts related to
hosting web content on Ubuntu Server, we will cover:

•	 Installing and configuring Apache
•	 Installing additional Apache modules
•	 Securing Apache with TLS
•	 Installing and configuring NGINX
•	 Setting up and configuring Nextcloud

To get us started, we’ll first look at configuring Apache, as well as some basic configuration.

Installing and configuring Apache
The best way to become familiar with any technology is to dive right in. We’ll begin this chapter by
installing Apache. But first, what exactly is Apache? For those that aren’t already aware, Apache is
a popular application that is typically run on Linux and Unix servers to serve web pages to users. It
runs in the background, and serves HTML pages to those that request a URL that exists on your server.

Installing Apache is very easy; it’s simply a matter of installing the apache2 package:

sudo apt install apache2

By default, Ubuntu will immediately start and enable the apache2 daemon as soon as its package is
installed. You can confirm this yourself with the following command:

systemctl status apache2

Serving Web Content286

In fact, at this point, you already have (for all intents and purposes) a fully functional web server. If
you were to open a web browser and enter the IP address of the server you just installed Apache on,
you should see Apache’s sample web page:

Figure 14.1: The default sample web page provided by Apache

There you go, you have officially served web content. All you needed to do was install the apache2
package, and your server was transformed into a web server. Chapter over, time to move on.

Of course, there’s more to Apache than simply installing it and having it present a sample web page.
While you could certainly replace the content in the sample web page with your own and be all set
when it comes to hosting content for your users, there’s much more to understand. For instance, there
are several configuration files in the /etc/apache2 directory that govern how sites are hosted, as well
as which directories Apache will look in to find web pages to host. Apache also features plugins, which
we will go over as well.

The directory that Apache serves web pages from is known as the document root, with /var/www/html
being the default. Inside that directory, you’ll see an index.html file, which is actually the default page
you see when you visit an unmodified Apache server. Essentially, this is a test page that is designed
to show you that the server is working, as well as some tidbits of information regarding the default
configuration.

You’re not limited to hosting just one website on a server, though. Apache supports the concept of a
virtual host, which allows you to serve multiple websites from a single server. Each virtual host consists
of an individual configuration file, which differentiates itself based on either name or IP address.

Chapter 14 287

For example, you could have an Apache server with a single IP address that hosts two different websites,
such as acmeconsulting.com and acmesales.com. These are hypothetical websites, but you get the idea.
To set this up, you would create separate configuration files for acmeconsulting.com and acmesales.
com and store them in your Apache configuration directory. Each configuration file would include
a <VirtualHost> stanza, where you would place an identifier such as a name or IP address that
differentiates one from the other. When a request comes in, Apache will serve either acmeconsulting.
com or acmesales.com to the user’s browser, depending on which criteria matched when the request
came in. The configuration files for each site typically end with the .conf filename extension and are
stored in the /etc/apache2/sites-available directory. We’ll go over all of this in more detail shortly,
so don’t worry if you don’t understand this yet.

The basic workflow for setting up a new site (virtual host) will typically be similar to the following:

•	 The web developer creates the website and related files
•	 These files are uploaded to Ubuntu Server, typically in a subdirectory of /var/www or another

directory the administrator has chosen
•	 After adding the necessary files into the Document Root directory, the administrator will make

sure that the www-data user owns all of the files within (in the case of Apache)
•	 The server administrator creates a configuration file for the site and copies it into the /etc/

apache2/sites-available directory
•	 The administrator enables the site and reloads Apache

Enabling virtual hosts is handled a bit differently in Debian and Ubuntu than on other platforms.
In fact, there are two specific commands to handle this purpose: a2ensite for enabling a site and
a2dissite for disabling a site. You won’t find these commands on distributions such as CentOS, for
example. Configuration files for each site are stored in the /etc/apache2/sites-available/ directory,
and we would use the a2ensite command to enable each configuration. Assuming a site with the
URL acmeconsulting.com is to be hosted on our Ubuntu server, we would create the /etc/apache2/
sites-available/acmeconsulting.com.conf configuration file and enable the site with the following
commands:

sudo a2ensite acmeconsulting.com.conf
sudo systemctl reload apache2

I’m not using absolute paths in my examples; as long as you’ve copied the configuration file to the
correct place, the a2ensite and a2dissite commands will know where to find it.

If we wanted to disable the site for some reason, we would execute the a2dissite command against
the site’s configuration file:

sudo a2dissite acmeconsulting.com.conf
sudo systemctl reload apache2

If you’re curious about how this works behind the scenes, when the a2ensite command is run against
a configuration file, it basically creates a symbolic link to that file and stores it in the /etc/apache2/
sites-enabled directory. When you run a2dissite to disable a site, this symbolic link is removed.

http://acmeconsulting.com

Serving Web Content288

Apache, by default, will use any configuration files it finds in the /etc/apache2/sites-enabled
directory. After enabling or disabling a site, you’ll need to refresh Apache’s configuration, which is
where the reload option comes in. This command won’t restart Apache itself (so users who are using
your existing sites won’t be disturbed) but it does give Apache a chance to reload its configuration files.
If you replace reload with restart in the preceding commands, Apache will perform a full restart.
You should only need to do that if you’re having an issue with Apache or enabling a new plugin, but
in most cases the reload option is preferred on a production system.

The main configuration file for Apache is located at /etc/apache2/apache2.conf. Feel free to view
the contents of this file; the comments contain a good overview of how Apache’s configuration is laid
out. The following lines in this file are of special interest:

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

As you can see, this is how Ubuntu has configured Apache to look for enabled sites in the /etc/apache2/
sites-enabled directory. Any file stored there with the .conf file extension is read by Apache. If
you wish, you could actually remove those lines and Apache would then behave as it does on other
platforms, and the a2ensite and a2dissite commands would no longer have any purpose. However,
it’s best to keep the framework of Ubuntu’s implementation intact, as separating the configuration
files makes logical sense and helps simplify the configuration. This chapter will go along with the
Ubuntu way of managing configuration.

An additional virtual host is not required if you’re only hosting a single site. The contents of /var/www/
html are served by the default virtual host if you make no changes to Apache’s configuration. This
is where the example site that ships with Apache comes from. If you only need to host one site, you
could remove the default index.html file stored in this directory and replace it with the files required
by your website. If you wish to test this for yourself, you can make a backup copy of the default index.
html file and create a new one with some standard HTML. You should see the default page change to
feature the content you just added to the file.

The 000-default.conf file is special, in that it’s basically the configuration file that controls the
default Apache sample website. If you look at the contents of the /etc/apache2/sites-available and
/etc/apache2/sites-enabled directories, you’ll see the 000-default.conf configuration file stored
in sites-available and symlinked in sites-enabled. This shows you that, by default, this site was
included with Apache, and its configuration file was enabled as soon as Apache was installed. For
all intents and purposes, the 000-default.conf configuration file is all you need if you only plan on
hosting a single website on your server. The contents of this file are as follows, but I’ve stripped the
comments out of the file in order to save space on this page:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

Chapter 14 289

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

As you can see, this default virtual host is telling Apache to listen on port 80 for requests and to serve
content from /var/www/html as soon as requests come in. The <VirtualHost> declaration at the
beginning is listening to everything (the asterisk is a wildcard) on port 80, so this is basically handling
all web traffic that comes into the server from port 80. The ServerAdmin clause specifies the email
address that is displayed in any error messages shown if there is a problem with the site.

The DocumentRoot setting tells Apache which directory to look for in order to find files to serve as
connections to this virtual host. /var/www/html is the default, but some administrators choose to
customize this. This file also contains lines for where to send logging information. The access log
contains information relating to HTTP requests that come in, which by default is stored in /var/log/
access.log. The error log is stored at /var/log/error.log and contains information you can use
whenever someone has trouble visiting your site. The ${APACHE_LOG_DIR} variable equates to /var/
log by default, and this is set in the /etc/apache2/envvars file, in case for some reason you wish to
change this (for example, you wish to use a custom logging directory).

If you wish to host another site on the same server by creating an additional virtual host, you can
use the same framework as the original file, with some additional customizations. Virtual host files
are stored in the /etc/apache2/sites-available directory, with a filename ending in .conf. Here’s
an example of a hypothetical website, acmeconsulting.com. A virtual host file such as this might be
saved as /etc/apache2/sites-available/acmeconsulting.com.conf:

<VirtualHost 192.168.1.104:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/acmeconsulting

 ErrorLog ${APACHE_LOG_DIR}/acmeconsulting.com-error.log
 CustomLog ${APACHE_LOG_DIR}/acmeconsulting.com-access.log combined
</VirtualHost>

To save time, I’ll generally copy another virtual host file, even the default one, and change it accordingly.
In this particular example, I’ve emphasized some important differences. First, with this virtual
host, I’m not listening for all connections coming in on port 80; instead, I’m specifically looking for
incoming traffic going to IP address 192.168.1.104 on port 80. This works because this server has
two network cards, and therefore two IP addresses. With virtual hosts, I’m able to serve a different
website, depending on which IP address the request is coming in on.

Next, I set DocumentRoot to /var/www/acmeconsulting. Each virtual host should have its own individual
DocumentRoot to keep each site separate from the others. On my servers, I will typically disable or
remove the sample virtual host (the one that has the default DocumentRoot of /var/www/html). Instead,
I use /var/www as a base directory, and each virtual host gets its own directory as a subdirectory of
this base.

Serving Web Content290

Another change I find useful is to give each virtual host its own log files. Normally, Apache will use
/var/log/apache2/error.log and /var/log/apache2/access.log to store log entries for all sites. If
you only have a single site on your server, that is fine. However, when you’re serving multiple sites, I
find it useful to give each site its own independent log files. That way, if you are having trouble with
a particular site, you don’t have to scroll through unrelated log entries to find what you’re looking for
when you’re troubleshooting. In my example, I inserted the website name in the log filenames, so this
virtual host is logging errors in the /var/log/apache2/acmeconsulting.com-error.log file, and the
access log is being written to /var/log/apache2/acmeconsulting.com-access.log. These log files
will be created for you automatically as soon as you reload Apache.

With a server that only has a single IP address, you can still set up multiple virtual hosts. Instead of
differentiating virtual hosts by IP, you can instead differentiate them by name. This is common on
Virtual Private Server (VPS) installations of Ubuntu, where you’ll typically have a single IP address
assigned to you by your VPS provider. For name-based virtual hosts, we would use the ServerName
option in our configuration. Refer to the following example to see how this would work. With this
example, I’m adding name-based virtual hosts to their own files. I called mine 000-virtual-hosts.
conf and stored it in the directory. The contents are as follows:

<VirtualHost *:80>
 ServerName acmeconsulting.com
 DocumentRoot /var/www/acmeconsulting
</VirtualHost>

<VirtualHost *:80>
 ServerName acmesales.com
 DocumentRoot /var/www/acmesales
</VirtualHost>

For each virtual host, I’m declaring a ServerName with a matching DocumentRoot. With the first example,
any traffic coming into the server requesting acmeconsulting.com will be provided a DocumentRoot
of /var/www/acmeconsulting. The second example looks for traffic from acmesales.com and directs
it to /var/www/acmesales. You can list as many virtual hosts here as you’d like to host on your server.
Providing your server has enough resources to handle traffic to each site, you can host as many as
you need.

If you’re using domain names with virtual hosts, then this will only work if you set up networking such
that the domain name referenced in the file resolves to the IP address of your server. Depending on your
configuration, there are multiple ways to do this. If you’re using a VPS provider, such as DigitalOcean
or Linode, your server will have an IP address already and you only need to edit the A Record on your
DNS server to point to that IP. (The various types of DNS entries, such as an A Record, were covered
in Chapter 11, Setting Up Network Services.)

http://acmeconsulting.com
http://acmesales.com

Chapter 14 291

If you’re running your own DNS server, you would add the A Record there. If you’re using an external
DNS provider, you would log in to the dashboard for your account and add the A Record there. For
testing purposes, you can edit your /etc/hosts file on your local workstation (not the server) to point
to your new web server. If you’re not using a VPS provider, you would need to forward port 80 in your
firewall to point to your internal web server. This is beyond the scope of this book, as there are many
different models of firewalls available and it’s impossible to cover them all.

As we continue through this chapter, we’ll perform some additional configurations for Apache. At this
point though, you should have an understanding of the basics of how Apache is configured in Ubuntu
Server. For extra practice, feel free to create additional virtual hosts and serve different pages for them.

Installing additional Apache modules
Apache features additional modules that can be installed that will extend its functionality. These
modules can provide additional features such as adding support for things like Python or PHP. Ubuntu’s
implementation of Apache includes two specific commands for enabling and disabling modules,
a2enmod and a2dismod, respectively. Apache modules are generally installed via packages from Ubuntu’s
repositories. To see a list of modules available for Apache, run the following command:

apt search libapache2-mod

In the results, you’ll see various module packages available, such as libapache2-mod-python (which
adds Python support) and libapache2-mod-php8.1 (which adds PHP 8.1 support), among many others.
Installing an Apache module is done the same way as any other package, with the apt install
command. In the case of PHP support, we can install the required package with the following command:

sudo apt install libapache2-mod-php8.1

Installing a module package alone is not enough for a module to be usable in Apache, though. Modules
must be enabled in order for Apache to be able to utilize them. As mentioned earlier, we can use the
a2enmod and a2dismod commands for respectively enabling or disabling a module. You can view a list
of modules that are built into Apache with the following command:

apache2 -l

The modules shown in the output will be those that are built into Apache, so you won’t need to enable
them. If the module your website requires is listed in the output, you’re all set.

Serving Web Content292

To view a list of all modules that are installed and ready to be enabled, you can run the a2enmod
command by itself with no options:

Figure 14.2: The a2enmod command showing a list of available Apache modules

The end of the output of the a2enmod command will ask you whether or not you’d like to enable any
of the modules:

Which module(s) do you want to enable (wildcards ok)?

If you wanted to, you could type the names of any additional modules you’d like to enable and then
press Enter. Alternatively, you can press Enter without typing anything to simply return to the prompt.

If you give the a2enmod command a module name as an option, it will enable it for you. To enable PHP
8.1 (which we’ll need later), you can run the following command:

sudo a2enmod php8.1

Chances are, though, if you’ve installed a package for an additional module, it was most likely enabled
for you during installation. With Debian and Ubuntu, it’s very common for daemons and modules
to be enabled as soon as their packages are installed, and Apache is no exception. In the case of the
libapache2-mod-php8.1 package I used as an example, the module should’ve been enabled for you
once the package was installed:

sudo a2enmod php8.1

If a module is already enabled, you will see output similar to the following when you try to enable it
with a2enmod:

Module php8.1 already enabled

Chapter 14 293

If the module wasn’t already enabled, we would see the following output:

Enabling module php8.1.
To activate the new configuration, you need to run:
systemctl restart apache2

As instructed, we’ll need to restart Apache in order for the enabling of a module to take effect. Keep in
mind that restarting Apache will make any sites it may host become unavailable during the process.
When it comes to disabling a module, the command syntax is fairly similar. To do so, you’ll use the
a2dismod command along with the name of the module you’d like to disable:

sudo a2dismod php8.1

Enabling a module that was already previously enabled will result in output similar to the following:

Module php8.1 disabled.

To activate the new configuration, you need to run:

systemctl restart apache2

The modules you install and enable on your Apache server will depend on the needs of your website.
For example, if you’re going to need support for Python, you’ll want to install the libapache2-mod-
python package. If you’re installing a third-party package, such as WordPress or Drupal, you’ll want to
refer to the documentation for those packages in order to obtain a list of which modules are required
for the solution to install and run properly. Once you have such a list, you’ll know which packages
you’ll need to install and which modules to enable.

Securing Apache with TLS
Nowadays, it’s a great idea to ensure your organization’s website is encrypted and available over HTTPS.
Encryption of web traffic has been historically achieved by utilizing Secure Sockets Layer (SSL) or,
more recently, TLS, which is the successor to SSL. Both refer to a method of utilizing cryptography
by installing signed certificates that protect and encrypt web traffic. The two functions are different,
but the end result is the same. Going forward, it’s recommended to use TLS due to the additional
security strength it offers, though it’s not uncommon to see SSL being used nowadays since it hasn’t
been completely phased out.

Setting up and benefiting from TLS is not all that difficult to do, and will help protect your organization
against common vulnerabilities being potentially exploited. Utilizing TLS doesn’t protect you from all
exploits being used in the wild, but it does offer a layer of protection you’ll want to benefit from. Not
only that, but your customers pretty much expect you to secure their communications nowadays. In
this section, we’ll look at how to use TLS with our Apache installation. We’ll work through enabling
it, generating certificates, and configuring Apache to use those certificates with both a single-site
configuration and with virtual hosts.

Serving Web Content294

By default, Ubuntu’s Apache configuration listens for traffic on port 80, but not port 443 (HTTPS). You
can check this yourself by running the following command:

sudo ss -tulpn | grep apache

The results will look similar to the following and will show the ports that Apache is listening on, which
is only port 80 by default:

tcp LISTEN 0 511 *:80
: u
sers:(("apache2",pid=11521,fd=4),("apache2",pid=11520,fd=4),
("apache2",pid=11519,fd=4),("apache2",pid=11518,fd=4),("apache2",pid=11517,fd=4),
("apache2",pid=11513,fd=4))

If the server were listening on port 443 as well, we would’ve seen the following within the output:

tcp LISTEN 0 511 *:443 *:*

To enable support for HTTPS traffic, we need to first enable the ssl module:

sudo a2enmod ssl

Next, we need to restart Apache:

sudo systemctl restart apache2

In addition to the sample website we discussed earlier, Ubuntu’s default Apache implementation also
includes another site configuration file, /etc/apache2/sites-available/default-ssl.conf. Unlike
the sample site, this one is not enabled by default. This configuration file is similar to the sample site
configuration, but it’s listening for connections on port 443 and contains additional configuration
items related to TLS. Here’s the content of that file, with the comments stripped out in order to save
space on this page:

<IfModule mod_ssl.c>
 <VirtualHost _default_:443>
 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 SSLEngine on

 SSLCertificateFile /etc/ssl/certs/ssl-cert-
 snakeoil.pem
 SSLCertificateKeyFile /etc/ssl/private/ssl-cert-

Chapter 14 295

 snakeoil.key

 <FilesMatch ".(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>

 </VirtualHost>
</IfModule>

We already went over the ServerAdmin, DocumentRoot, ErrorLog, and CustomLog options earlier in this
chapter, but there are additional options in this file that we haven’t seen yet. On the first line, we can
see that this virtual host is listening on port 443. We also see _default_ listed here instead of an IP
address. The _default_ option only applies to unspecified traffic, which in this case means any traffic
coming into port 443 that hasn’t been identified in any other virtual host. In addition, the SSLEngine
on option enables TLS traffic. Right after that, we have options for our TLS certificate file and key file,
which we’ll get to a bit later.

We also have a <Directory> clause, which allows us to apply specific options to a directory. In this
case, the /usr/lib/cgi-bin directory is having the SSLOptions +StdEnvVars settings applied, which
enables default environment variables for use with TLS. This option is also applied to files that have
an extension of .cgi, .shtml, .phtml, or .php through the <FilesMatch> option. The BrowserMatch
option allows you to set options for specific browsers, though it’s out of scope for this chapter. For now,
just keep in mind that if you want to apply settings to specific browsers, you can.

By default, the default-ssl.conf file is not enabled. In order to benefit from its configuration options,
we’ll need to enable it, which we can do with the a2ensite command as we would with any other
virtual host:

sudo a2ensite default-ssl.conf

Even though we just enabled TLS, our site isn’t secure just yet. We’ll need TLS certificates installed
in order to secure our web server. We can do this in one of two ways, with self-signed certificates
or certificates signed by a certificate authority. Both are implemented in very similar ways, and I’ll
discuss both methods. For the purposes of testing, self-signed certificates are fine. In production, self-
signed certificates would technically work, but most browsers won’t trust them by default and will give
you an error when you go to their page. Therefore, it’s a good idea to refrain from using self-signed
certificates on a production system. Users of a site with self-signed certificates would need to bypass
an error page before continuing to the site, and seeing this error may cause them to avoid your site
altogether. You can install the certificates into each user’s web browser, but that can be a headache.
In production, it’s best to use certificates signed by a vendor.

Serving Web Content296

Another method of setting up a certificate on your server is Let’s Encrypt, a popular (and free) service
for encrypting web traffic. Consider checking out the instructions at the Let’s Encrypt website at
letsencrypt.org/docs, as well as the example article mentioned at the end of the chapter.

As we go through this process, I’ll first walk you through setting up TLS with a self-signed certificate
so you can see how the process works. We’ll create the certificate and then install it into Apache. You
won’t necessarily need to create a website to go through this process, since you could just secure the
sample website that comes with Apache if you wanted something to use as a proof of concept. After
we complete the process, we’ll take a look at installing certificates that were signed by a certificate
authority.

To get the ball rolling, we’ll need a directory to house our certificates. I’ll use /etc/apache2/certs in
my examples, although you can use whatever directory you’d like, as long as you remember to update
Apache’s configuration with your desired location and filenames:

sudo mkdir /etc/apache2/certs

For a self-signed certificate and key, we can generate the pair with the following command. Feel free
to change the name of the key and certificate files to match the name of your website:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/apache2/
certs/mysite.key -out /etc/apache2/certs/mysite.crt

You’ll be prompted to enter some information for generating the certificate. Answer each prompt
as they come along. Here’s a list of the questions you’ll be asked, along with my responses for each.
Change the answers to fit your server, environment, organization name, and location:

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Michigan
Locality Name (eg, city) []:Detroit
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company
Organizational Unit Name (eg, section) []:IT
Common Name (e.g. server FQDN or YOUR name) []:myserver.mydomain.com
Email Address []:webmaster@mycompany.com

Now, you should see that two files have been created in the /etc/apache2/certs directory, mysite.
crt and mysite.key, which represent the certificate and private key, respectively. Now that these
files have been generated, the next thing for us to do is to configure Apache to use them. Look for the
following two lines in the /etc/apache2/sites-available/default-ssl.conf file:

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

Comment these lines out by placing a # symbol in front of both:

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

http://letsencrypt.org/docs

Chapter 14 297

Next, add the following two lines underneath the lines you just commented out. Be sure to replace the
target directories and certificate filenames with yours, if you followed your own naming convention:

SSLCertificateFile /etc/apache2/certs/mysite.crt
SSLCertificateKeyFile /etc/apache2/certs/mysite.key

To make Apache benefit from the new configuration, reload the apache2 daemon:

sudo systemctl reload apache2

With the new configuration in place, we’re not quite done but we’re close. We still have a small bit of
configuration left to add. But before we get to that, let’s return to the topic of installing TLS certificates
that were signed by a certificate authority. The process for installing signed TLS certificates is pretty
much the same, but the main difference is how the certificate files are requested and obtained. Once
you have them, you will copy them to your file server and configure Apache the same way as we
just did. To start the process of obtaining a signed TLS certificate, you’ll need to create a Certificate
Signing Request (CSR). A CSR is basically a request for a certificate in file form that you’ll supply to
your certificate authority to start the process of requesting a signed certificate. A CSR can be easily
generated with the following command:

openssl req -new -newkey rsa:2048 -nodes -keyout server.key -out server.csr

With the CSR file that was generated, you can request a signed certificate. The CSR file should now
be in your current working directory. The entire process differs from one provider to another, but in
most cases, it’s fairly straightforward. You’ll send them the CSR, pay their fee, fill out a form or two on
their website, prove that you are the owner of the website in question, and then the vendor will send
you the files you need. It may sound complicated, but certificate authorities usually walk you through
the entire process and make it clear what they need from you in order to proceed. Once you complete
the process, the certificate authority will send you your certificate files, which you’ll then install on
your server. Once you configure the SSLCertificateFile and SSLCertificateKeyFile options in
/etc/apache2/sites-available/default-ssl.conf to point to the new certificate files and reload
Apache, you should be good to go.

There’s one more additional step we should perform for setting this up properly. At this point, our
certificate files should be properly installed, but we’ll need to inform Apache of when to apply them. If
you recall, the default-ssl.conf file provided by the apache2 package is answering requests for any
traffic not otherwise identified by a virtual host (the <VirtualHost _default_:443> option). We will
need to ensure that our web server is handling traffic for our existing websites when TLS is requested.
We can add a ServerName option to that file to ensure our site supports TLS.

Add the following option to the /etc/apache2/sites-available/default-ssl.conf file, right
underneath <VirtualHost _default_:443>:

ServerName mydomain.com:443

Serving Web Content298

Now, when traffic comes into your server on port 443 requesting a domain that matches the domain
you typed for the ServerName option, it should result in a secure browsing session for the client. You
should see the green padlock icon in the address bar (this depends on your browser), which indicates
that your session is secured. If you’re using self-signed certificates, you’ll probably see an error you’ll
have to skip through first, and you may not get the green padlock icon. This doesn’t mean the encryption
isn’t working; it just means your browser is skeptical of the certificate since it wasn’t signed by a known
certificate authority. Your session will still be encrypted.

If you are planning on hosting multiple websites over HTTPS, you may want to consider using a separate
virtual host file for each. An easy way to accomplish this is to use the /etc/apache2/sites-available/
default-ssl.conf file as a template and change DocumentRoot to the directory that hosts the files for
that site. In addition, be sure to update the SSLCertificateFile and SSLCertificateKeyFile options
to point to the certificate files for the site and set ServerName to the domain that corresponds to your
site. Here’s an example virtual host file for a hypothetical site that uses TLS. I’ve highlighted lines that
I’ve changed from the normal default-ssl.conf file:

<IfModule mod_ssl.c>
 <VirtualHost *:443>
 ServerName acmeconsulting.com:443

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/acmeconsulting
 ErrorLog ${APACHE_LOG_DIR}/acmeconsulting.com-error.log
 CustomLog ${APACHE_LOG_DIR}/acmeconsulting.com-access.
 log combined

 SSLEngine on
 SSLCertificateFile /etc/apache2/certs/acmeconsulting/acme.
 crt
 SSLCertificateKeyFile /etc/apache2/certs/acmeconsulting/acme.
 key

 <FilesMatch ".(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>

 </VirtualHost>
</IfModule>

Chapter 14 299

Basically, what I did was create a new virtual host configuration file (using the existing default-
ssl.conf file as a template). I called this new file acme-consulting.conf and I stored it in the /etc/
apache2/sites-available directory. I changed the VirtualHost line to listen for anything coming in
on port 443. The line ServerName acmeconsulting.com:443 was added to make this file responsible
for traffic coming in looking for acmeconsulting.com on port 443. I also set DocumentRoot to /var/
www/acmeconsulting. In addition, I customized the error and access logs so that it will be easier to
find log messages relating to this new site, since its log entries will go to their own specific files.

In my experience, I find that a modular approach, such as what I’ve done with the sample virtual host
file for HTTPS, works best when setting up a web server that’s intended to host multiple websites. With
each site, I’ll typically give it its own document root, certificate files, and log files. Even if you’re only
planning on hosting a single site on your server, using this modular approach is still a good idea, since
you may want to host additional sites later on.

So, there you have it. You should now understand how to set up secure virtual hosts in Apache.

Installing and configuring NGINX
Apache isn’t the only technology that is capable of allowing you to host web content on your server.
NGINX also serves the same purpose and is gaining popularity quite rapidly. Apache is still a great
option, and even if that’s your chosen web server software, it’s a good idea to at least be familiar with
NGINX and learn its basics. NGINX itself is a proxy server as well but is capable of also serving web
content, which is why it competes with Apache.

Before we do so, I want to mention first that you can really only have one web server service running on
a single web server. If you’ve been following along up to now, you currently have a functional Apache
web server. If you were to also install NGINX, it probably wouldn’t start as the ports it wants to listen
on (port 80 and/or 443) will already be in use. You can run both on a single server, but that’s outside the
scope of this book. Ideally, you’d want to use one or the other. Therefore, to continue with this section
you’d either want to remove Apache or set up a separate web server for testing NGINX. I recommend
the latter, because later on in this chapter we will take a look at hosting Nextcloud, and we will be
using Apache to do so. If you remove Apache now, you’d have to add it back in order to follow along
with that section. Theoretically, you’d only have to stop the apache2 process before starting nginx, but
the two resources sharing the same server have a lot of variables and may conflict.

To get started with NGINX, simply install it:

sudo apt install nginx

Serving Web Content300

Just like with Apache, if we enter the IP address of our server in a browser, we’re presented with a
sample page, but this time NGINX’s version instead of the one that ships with Apache. It certainly
looks boring in comparison, but it works:

Figure 14.3: The NGINX sample page

The default configuration files for nginx are stored in the /etc/nginx directory. Go ahead and peruse
these files to get a general feel for how the configuration is presented. Similar to Apache, you also have
sites-enabled and sites-available directories here, which serve the same purpose.

Just as with Apache, the sites-available directory houses configuration files for sites that can be
enabled, while the sites-enabled directory stores configuration files for sites that are enabled. Unlike
Apache, though, we don’t have dedicated commands to enable these sites. We have to link them
manually. Although we haven’t even looked at NGINX configuration files yet, let’s just assume that we
have created the following configuration file:

/etc/nginx/sites-available/acmesales.com

To enable that site, we would need to create a symbolic link for it and store that link in the /etc/
nginx/sites-enabled directory:

sudo ln -s /etc/nginx/sites-available/acmesales.com /etc/nginx/sites-enabled/
acmesales.com

Then, we can reload nginx:

sudo systemctl reload nginx

As it stands right now, a site configuration file named default exists in /etc/nginx/sites-available
and a symbolic link to it is already present in /etc/nginx/sites-enabled. If all we want to do is host
a single site, we only need to replace the default content that NGINX serves, which is located in the
/var/www/html directory (the same as Apache) with the content for our site. After refreshing the page,
we’re good to go.

Chapter 14 301

If we want to serve more than one site from one server, the default file is a great starting point for
creating additional virtual hosts. We can start by copying it to a new name:

sudo cp /etc/nginx/sites-available/default /etc/nginx/sites-available/
acmesales.com

Obviously, acmesales.com is an example, so feel free to name this whatever you wish.

Now, we can edit this file and change it to serve additional content. First of all, only one site can be
referred to as a default site. A default site in NGINX is one that answers if none of the other sites match
a request. Therefore, we want to remove both occurrences of default_server from our newly copied
config. Find these lines:

listen 80 default_server;
listen [::]:80 default_server;

Change them to this:

listen 80;
listen [::]:80;

Next, we’ll need to adjust the server_name option to refer to the name of our new site. Add this line:

server_name acmesales.com www.acmesales.com;

Now, we’ll need to change the document root to the directory that will store the files for our new site.
Find this line:

root /var/www/html;

And change it to this:

root /var/www/acmesales.com;

The final file should look like the following at this point:

server {
 listen 80;
 listen [::]:80;

 root /var/www/acmesales.com;

 index index.html index.htm index.nginx-debian.html;

 server_name acmesales.com www.acmesales.com;

 location / {
 try_files $uri $uri/ =404;
 }
}

Serving Web Content302

You can probably see that the configuration format for NGINX configuration files is simpler than with
Apache. I find this to be true, and I’ve noticed that sites I’ve configured with NGINX generally have
fewer lines in their configuration files than Apache does.

At this point, assuming that you have the required content in /var/www/acmesales.com and have a
proper configuration file, the new site should respond as soon as you reload nginx. But what about
TLS? I recommend that we always secure our websites, regardless of which solution we’re using to
serve it. With NGINX, we can add that feature easily. The certificate files themselves are the same
regardless of whether we’re using Apache or NGINX. If you haven’t already created your certificate
files, refer back to the section in this chapter where we did so. Assuming you already have certificate
files, we just need to make additional changes to our configuration.

First, we change the first two lines to listen on port 443 with TLS instead of standard port 80:

listen 443 ssl;
listen [::]:443 ssl;

Next, we’ll add the following two lines before the location section:

ssl_certificate /etc/certs/cert.pem;
ssl_certificate_key /etc/certs/cert.key;
ssl_session_timeout 5m;

For this to work, you’ll need to adjust the paths and the names of the cert files to make sure they match
what you called them on your server. The entire file should look similar to the following at this point:

server {
 listen 443 ssl;
 listen [::]:443 ssl;

 root /var/www/html;

 index index.html index.htm index.nginx-debian.html;

 server_name acmesales.com www.acmesales.com;

 ssl_certificate /etc/certs/cert.pem;
 ssl_certificate_key /etc/certs/cert.key;
 ssl_session_timeout 5m;
 location / {
 try_files $uri $uri/ =404;
 }
}

Chapter 14 303

Finally, a potential problem is that users may access our site via port 80, instead of utilizing HTTPS. We
can tell NGINX to forward these people to the secure version of our site automatically. To do that, we
can edit the default configuration file (/etc/nginx/sites-available/default) and add the following
line just after the two listen directives:

return 301 https://$host$request_uri;

Now, anytime a user visits the HTTP version of our site, they’ll be redirected to the secure HTTPS
version automatically.

Now that we’ve looked at serving web content with both Apache and NGINX, let’s take a look at setting
up our very own Nextcloud server.

Setting up and configuring Nextcloud
I figured we’d end this chapter with a fun activity: setting up our very own Nextcloud server. Nextcloud
is a very useful web application that’s handy for any organization. Even if you’re not working on a
company network, Nextcloud is a great asset for even a single user. You can use it to synchronize files
between machines, store and sync contacts, keep track of tasks you’re working on, fetch email from
a mail server, and more. To complete this activity, you’ll need a web server to work with. Nextcloud
supports multiple different web server platforms, but in this example, we’ll be using Apache.

You’ll also need an installation of MySQL or MariaDB, as Nextcloud will need its own database. We
went over installing and managing MariaDB databases in Chapter 13, Managing Databases. I’ll give
you all the commands you’ll need to set up the database in this section, but refer back to Chapter 13,
Managing Databases, if any of these commands confuse you.

To get started, we need to download Nextcloud. To do so, head on over to the project’s website at
https://www.nextcloud.com and navigate to the Download section. The layout of this site may change
from time to time, but at the time of writing, the first link to click on is a button labeled Get Nextcloud,
which will take you to the download page. As of the time of writing, the direct URL for the download
page for Nextcloud is currently https://nextcloud.com/install.

Once there, look for the Archive File heading, and expand it. Underneath that, you should see a button
that reads Download for Server, but don’t click on it just yet. Instead, right-click on it and click Copy
link address or a similarly named option, depending on the browser you use.

This should copy the link for the download to your clipboard. If the Nextcloud website layout has
changed since publication, you’re essentially just looking for the URL to the ZIP file to download
Nextcloud, and you’ll want to copy it to your computer’s clipboard.

Next, open an SSH session to your web server. Make sure you’re currently working from your home
directory, and execute the following command:

wget <URL of Nextcloud>

https://www.nextcloud.com
https://nextcloud.com/install

Serving Web Content304

To get the Nextcloud URL, simply paste the URL into your terminal after typing wget. Your entire
command will look similar to the following:

wget https://download.nextcloud.com/server/releases/latest.zip

This command will download the Nextcloud software locally to your current working directory. Next,
we’ll need to unzip the archive:

unzip latest.zip

If you get an error message insinuating that the unzip command is not available, you may need to
install it:

sudo apt install unzip

Now, let’s move the newly extracted nextcloud directory to /var/www/html:

sudo mv nextcloud /var/www/html/nextcloud

In order for Nextcloud to function, the user account that Apache uses to serve content will need full
access to it. Let’s use the following command to give the user www-data ownership of the nextcloud
directory:

sudo chown www-data:www-data -R /var/www/html/nextcloud

Now, you should have the required files for the Nextcloud software installed on the server in the
/var/www/nextcloud directory. In order for this to work, though, Apache will need a configuration
file that includes /var/www/nextcloud as its document root. We can create the file we need at the
following location:

/etc/apache2/sites-available/nextcloud.conf

Example content to include in that file is as follows:

Alias /nextcloud "/var/www/html/nextcloud/"

<Directory /var/www/html/nextcloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/html/nextcloud
 SetEnv HTTP_HOME /var/www/html/nextcloud
</Directory>

Chapter 14 305

Similar to our earlier discussion on Apache, we’re adding a config file here specifically for Nextcloud
that sets up an alias to point to /nextcloud to www.mydomain.com/nextcloud. Essentially, it allows
Nextcloud to be reached at your domain name, plus /nextcloud added to the end. The rest of the file
disables WebDAV (a means of allowing a web server to act as a file server, not needed in our case) and
then enables environment variables to set HOME and HTTP_HOME to the document root for Nextcloud,
which in our case is /var/www/html/nextcloud.

Next, we enable the new site:

sudo a2ensite nextcloud.conf

Next, we’ll need to make a change to Apache. First, we’ll need to ensure that the libapache2-mod-
php8.1 package is installed since Nextcloud requires PHP, but we’ll need some additional packages
as well. You can install Nextcloud’s prerequisite packages with the following command:

sudo apt install libapache2-mod-php8.1 php8.1-curl php8.1-gd php8.1-intl
php8.1-mbstring php8.1-mysql php8.1-xml php8.1-zip

Next, restart Apache so that it can take advantage of the new PHP plugin:

sudo systemctl restart apache2

At this point, we’ll need a MySQL or MariaDB database for Nextcloud to use. This database can exist
on another server, or you can share it on the same server you installed Nextcloud on. If you haven’t
already set up MariaDB, a walk-through was covered during Chapter 13, Managing Databases. At this
point, it’s assumed that you already have MariaDB installed and running.

Log in to your MariaDB instance as your root user, or a user with full root privileges. You can create
the Nextcloud database with the following command:

CREATE DATABASE nextcloud;

Next, we’ll need to add a new user to MariaDB for Nextcloud and give that user full access to the
nextcloud database. We can take care of both with the following command:

GRANT ALL ON nextcloud.* to 'nextcloud'@'localhost' IDENTIFIED BY 'super_
secret_password';

Make sure to change super_secret_password to a very strong (preferably randomly generated)
password. Make sure you save this password in a safe place.

Now we have all we need in order to configure Nextcloud. You should now be able to visit your Nextcloud
instance in a web browser. Just enter a URL similar to the following, replacing the sample IP address
with the one for your server:

http://172.16.250.133/nextcloud

If you’re using a subdomain and gave Nextcloud its own virtual host, that URL would then be something
like this:

http://nextcloud.yourdomain.com/nextcloud

Serving Web Content306

You should see a page asking you to configure Nextcloud:

Figure 14.4: Nextcloud configuration page

If you do not see this page, make sure that the /var/www/html/nextcloud directory is accessible via
Apache. Also, make sure you have an appropriate virtual host for Nextcloud referencing this directory
as its Document Root.

This page will ask you for several pieces of information. First, you’ll see Username and Password.
This is not asking you for a pre-existing account, but actually to set up a brand-new administrator
account. This shouldn’t be an account you’ll use on a day-to-day basis, but instead an admin account
you’ll use only when you want to add users and maintain your system. Please note that it won’t ask
you to confirm the password, so you’ll want to make certain you’re entering the password you think
you are. It’s perhaps safer to type the password in a text editor, and then copy and paste the password
into the Password box to make sure you don’t lock yourself out.

Data folder will default to /var/www/html/nextcloud/data. This default is normally fine, but if you
have configured your server to have a separate data partition, you can configure that here. If you plan
on storing a large amount of data on your Nextcloud server, setting up a separate partition for it may
be a good idea. If you do, you can set that here. Otherwise, leave the default.

Chapter 14 307

In the next section, you’ll be asked to fill in information for the Nextcloud database we created earlier.
Database user and Database password will use the values we created when we set up the MariaDB
database for Nextcloud earlier. In my examples, I used nextcloud for the username as well as Database
name. The password will be whatever it is you used for the password when we set up the database user
account and granted privileges. Finally, the database server defaults to localhost, which is correct as
long as you set up the database on the same machine as the Nextcloud server. If not, enter the address
of your database server here, if it’s somewhere else. The following screenshot shows the initial form
completely filled out with the example values we’ve used so far in this section:

Figure 14.5: Nextcloud configuration page

Serving Web Content308

That’s it! Assuming all went well, Nextcloud will set itself up in the background and you’ll then continue
to the main screen. Since you only created an admin account so far, I recommend you create an account
for yourself, as well as any friends or colleagues you’d like to check out your Nextcloud server. To do so,
go to the top-right corner of the Nextcloud page, where it shows an icon that resembles a gear. When
you click on this icon, you’ll see an option for Users:

Figure 14.6: Nextcloud menu

Chapter 14 309

On the Users screen, you’ll be able to add additional users to access Nextcloud. Click on the New User
button. Simply fill out the Username and Password fields at the top of the screen, and then click on
the blue checkmark icon to finish the process:

Figure 14.7: Adding a new user to Nextcloud

As an administrative user, you can enable or disable various apps that are used by your users. Out
of the box, Nextcloud has a basic suite of apps enabled, such as the File Sharing and Photos plugins.
There are many more apps that you can enable in order to extend its functionality. In the top-right
corner of the main screen of Nextcloud, you’ll find an icon that looks like a gear, and if you click on it,
you will find a link to Apps, which will allow you to add additional functionality. Feel free to enable
additional apps to extend Nextcloud’s capabilities. Some of my must-haves include Notes and Tasks.

Serving Web Content310

Now, you have your very own Nextcloud server. I find Nextcloud to be a very useful platform. Some
Linux desktop environments (such as GNOME) have built-in integrations that allow you to add your
Nextcloud account right to your desktop, which will allow calendar and contact syncing with your
computer. There are also standalone client apps available for Linux, Windows, and macOS that you
can download from the same URL that we’ve downloaded Nextcloud itself from.

I’m sure you’ll agree that Nextcloud is a very useful asset to have available. For more information
on using Nextcloud, check out the manual. In fact, it’s available in the Files app from within the
application itself.

Summary
In this action-packed chapter, we looked at serving web pages with Apache. We started out by installing
and configuring Apache, and then added additional modules. We also covered the concept of virtual
hosts, which allow us to serve multiple websites on a single server, even if we only have a single network
interface. Then, we walked through securing our Apache server with TLS. With Apache, we can use
self-signed certificates, or we can purchase TLS certificates from a vendor for a fee. We looked at both
possibilities. We even set up NGINX, which is a very powerful application that is growing in popularity.
Finally, we closed out the chapter with a guide to installing Nextcloud, which is an application I’m
sure you’ll find incredibly useful.

In the next chapter of our journey, we’ll take a look at the process of automating server configuration
with Ansible, which is a lot of fun.

Relevant videos
•	 Nextcloud setup walk-through: https://linux.video/nextcloud-setup

Further reading
•	 NGINX documentation: https://nginx.org/en/docs/
•	 NGINX documentation from the Ubuntu community wiki:

https://help.ubuntu.com/community/Nginx

•	 Apache HTTP server documentation: https://httpd.apache.org/docs/
•	 Nextcloud administration manual:

https://docs.nextcloud.com/server/latest/admin_manual/
•	 Certbot instructions: https://certbot.eff.org/instructions

https://linux.video/nextcloud-setup
https://nginx.org/en/docs/
https://help.ubuntu.com/community/Nginx
https://httpd.apache.org/docs/
https://docs.nextcloud.com/server/latest/admin_manual/
https://certbot.eff.org/instructions

Chapter 14 311

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

15
Automating Server Configuration
with Ansible

Nowadays, it’s not uncommon to have hundreds of servers that make up your organization’s
infrastructure. As our user base grows, we’re able to scale our environment to meet the demands of
our customers. As we scale our resources and add additional servers, the amount of time we spend
configuring them and setting them up increases considerably. The time spent setting up new servers
can be a major burden—especially if we need to create hundreds of servers within a small window of
time. As workload demands increase, we need to have a solution in place to manage our infrastructure
and quickly deploy new resources with as small a workload as possible. In this chapter, we explore
the concept of configuration management along with automated deployments. This sure sounds
complicated, but it’s not—you’ll be surprised how easy it is to automate your configuration.

In this chapter, we will cover:

•	 Understanding the need for configuration management
•	 Why Ansible?
•	 Creating a Git repository
•	 Getting started with Ansible
•	 Making your servers do your bidding
•	 Putting it all together – automating web server deployment
•	 Using Ansible’s pull method

In the introduction, I’ve already given you some examples of why you might want to consider building
automation into your workflow and implement an effective solution in your environment. In the next
section, we’ll explore the need for automation in more detail before we actually get started.

Understanding the need for configuration management
When I first started working in the IT industry, it was a much different landscape than it is today.
Servers were all physical, and any time you needed a new server, you literally needed to call a vendor
and order one.

Automating Server Configuration with Ansible314

You waited for a week or two for the server to be built and sent to you. When it arrived, you installed it
in a rack, set up an operating system, and then installed whatever applications you needed. You then
tested the server for a while to make sure the combination of software, hardware, and drivers was
stable and reliable. After some time, you’d deploy the new server into production.

Nowadays, it’s still the case that system administrators often need to purchase and install hardware,
much like the process I mentioned in the previous paragraph. However, with virtual machines and
containers, the physical hardware we install is commonly just a catalyst to host virtual resources. In the
past, we had one physical server for each use case, which meant we needed to have very large server
rooms. But in modern times, you may have a server with dozens of cores that are capable of running
hundreds of virtual machines. But the problem of configuration remains—the process of setting up
an operating system and applications is a very time-consuming endeavor.

As the landscape changed, the need for automation increased. Servers needed to be deployed quickly
and efficiently. With the large number of servers in a typical data center, it became less and less practical
to connect to each of them and configure them one by one every time a change was necessary. For
example, when a security vulnerability hit the news, the typical administrator would need to manually
install a patch on every server. This could take days or even weeks. That’s not very efficient.

To better deal with this issue, the concept of configuration management has become very popular.
With configuration management, an administrator can write some sort of code (such as a script)
and then use a utility to execute it across every server. Configuration management is also known
as Infrastructure as Code (IaC) and basically lets the administrator define a set of guidelines for
servers of various types and have them automatically be provisioned to meet those requirements.
This automation saves a ton of work.

Configuration management also comes into play while provisioning a new server. Imagine defining
some rules for a specific type of server, and having it come to life meeting those exact specifications.
The applications you want it to have are installed during the provisioning process, configuration files
are copied over, users are created, and firewall rules are put in place, all automatically as defined in
your specification. Put even more simply, imagine setting up something like a web server with just a
single command. No need to install Apache or do any of that manual work. You simply request a server,
and the configuration management solution you have in place will take care of the rest.

IaC, which is basically a fancy term for configuration management, is essentially just the automated
running of scripts on your servers. In this book, we’ve looked at automation already. In Chapter 6,
Boosting Your Command-line Efficiency, we wrote a simple script that we could use to back up a server.
That same mentality can be used for provisioning servers as well, by simply having a server run a
script when it comes online. For existing servers, you can make a change once and apply that change
to every server you manage, or even just a subset.

This is where configuration management utilities, such as Chef, Puppet, and others, come into play.
Each of these solutions features a specific type of scripting language that is designed from the ground
up to facilitate the provisioning of resources. With such utilities, there is typically some sort of program
(or locally installed agent) that interprets the instructions from a central server and runs them on its
clients. Each solution is relatively smart; it will determine what needs to be done and perform the steps.

Chapter 15 315

If a requirement is met, the instruction is skipped. If a required resource is not present, it will be
configured appropriately. One such configuration management solution is Ansible, which we will
use in this chapter.

Why Ansible?
In this chapter, I will show you how to set up Ansible, and then we will use it to automate some
configuration tasks. By the end of this chapter, you’ll understand the basic concepts you can use to
start the process of automating deployments in your organization. You may be wondering, then, why
Ansible and not one of the other solutions, such as Chef or Puppet?

Some configuration management solutions are relatively heavy from a resource perspective. With
other solutions, you’ll generally have a central server, which will run a master program. This program
will periodically check in with each server under its control by communicating with the agent installed
on each server. Then, the agent will receive instructions from the central server and carry them out.

This means that you’ll need to maintain a server with modest CPU and RAM requirements, and the
agent on the client side of the communication will also spend valuable CPU in order to carry out the
instructions. This resource utilization can be very heavy on both the primary and client servers.

Ansible is very different than the other solutions in that there is no agent at all. There is typically a
server, but it’s not required to run any resource-intensive software. The entire configuration process
happens via SSH, so you can even carry out the instructions from your workstation if you want to skip
having to maintain a central server. Typically, the administrator will create a user account on each
server, and then the central Ansible server (or workstation) will execute commands over SSH to update
the configuration on each machine. Since there is no agent installed on each server, the process takes
a lot less CPU. Of course, the instructions that Ansible gives your servers will definitely result in CPU
usage, but certainly a lot less than the other solutions.

Ansible is typically set up by creating an inventory file, which contains a list of resources (servers) (in
the form of hostnames or IP addresses that Ansible will be instructed to connect to and configure). If
you want to add a new server, you simply make sure that a specific user account exists on that server,
then you add it to the inventory list. If you want to remove it, you delete the line in the inventory file
corresponding to that server. It’s very easy.

However, something that’s magical about Ansible is that you don’t even have to run a central server
at all if you don’t want to. You can store your Ansible configuration in a Git repository, and have each
server download code from the repository and run it locally. This means that if you do have a dynamic
environment where servers come and go all the time (which is very common in cloud deployments),
you don’t have to worry about maintaining an inventory file. Just instruct each server to download the
code and provision themselves. This is known as the pull method of Ansible, which I will also show you.

While solutions such as Chef and Puppet have their merits and are definitely fun to use, I think you’ll
find that Ansible scales better and gives you far more control over how these hosts are configured.
While it’s up to you to figure out exactly how you want to implement Ansible, the creative freedom it
gives you is second to none. I’ve been using Ansible for quite a while now, and I’m still finding new
ways to use it. It’s a technology that will grow with you.

Automating Server Configuration with Ansible316

Creating a Git repository
For the examples in this chapter, it’s recommended that you create a Git repository to store your Ansible
code. This isn’t required, as you can find other ways of hosting your code, but it’s highly recommended.
This is especially true when we get to the pull method of Ansible at the end of this chapter. In this
section, I’ll walk you through creating a repository. If you already know how to use GitHub, you can
skip this section.

While a full walkthrough of Git is beyond the scope of this book, the basics are more than enough
for following along here. When it comes to Git, you can simply install the git package on a server to
have it host your code, but GitHub is probably the easiest way to get started. An added bonus is that
GitHub is home to a lot of great projects you can benefit from, and browsing the code of these projects
is a great way to become more accustomed to syntax rules with different scripting and programming
languages. For our purposes, we’re going to use GitHub as a central place to store our Ansible code.

It probably goes without saying, but GitHub is a public resource. Any code you upload to the service
will be available for all to see by default. Therefore, be mindful of the information you commit to your
repository. Make sure you don’t include any personally identifiable information, passwords, blueprints,
API keys, or anything else you don’t want the public to know about you or your organization. You can
create a private repository to hide confidential information, but it’s still safer to not upload protected
information at all (whether the repository is private or not).

To get started, create an account at https://www.github.com if you don’t already have one. This is
a free process. Make sure you create a reasonably secure password here. After you have created an
account, click on New repository, and then give it a name (simply calling it ansible is fine):

https://www.github.com

Chapter 15 317

Figure 15.1: Creating an Ansible repository on GitHub

In the example screenshot, I created a repository that is Public, which means exactly that—anyone
will be able to view the code. You can create Private repositories as well, if you prefer. Since we’re not
going to include confidential information in the repository during the examples in this book, we don’t
need to worry about that right now.

Automating Server Configuration with Ansible318

Once the repository is created using Create repository, we’ll need to download it locally. For that, we’ll
need to install the git package:

sudo apt install git

Next, we should set up our local Git client so that we can fill out our name and email address, otherwise
Git will most likely complain. To do this, we can issue the following commands, substituting the content
in the quotes with your information:

git config user.email "you@example.com"
git config user.name "John Doe"

To download our repository, the following will do the trick (ignore the warning about the repository
being empty if you see such a message):

git clone https://github.com/myusername/ansible.git

Now you have the Git repository downloaded locally. Right now, the repository doesn’t include anything
useful. To create a file within the repository, you simply change your working directory to be inside
the repository folder that was downloaded when you cloned it, and create whatever files you want
inside. By default, Git doesn’t care about any files you create inside the repository until you add them.
For example, we can create a test file and commit it to the repository with the following commands:

echo "this is a test" > testfile.txt
git add testfile.txt
git commit -m "initial commit"

With these commands, we used echo to create a test file with some text in it. Then, we used the git
add command to tell Git that we want the file to be a part of our repository. Finally, we finalized our
changes by using git commit, along with the -m flag and a message about the commit. At this point,
the changes only exist locally. To push our changes back to GitHub, we use the following command
from inside the repository directory:

git push origin main

By following the on-screen prompts (GitHub username and password), our changes will be placed
inside our actual repository.

So, how does this help us when it comes to configuration management? Typically, the code that
administrators use to provision servers will be placed inside a repository for safekeeping. If the local
copy of the code is lost, it can simply be cloned again from the repository. GitHub is a safe place to put
our code, since we can be reasonably sure that our code won’t disappear as the service is very stable
(you still may want to create a local backup to be safe). Whether you’re using Ansible, Chef, Puppet,
or another utility, it’s common practice to keep the code in a Git repository. With regard to Ansible,
this will directly impact us in the last section of this chapter since we’ll be using the ansible-pull
command, which expects a repository URL.

Chapter 15 319

In practice, when we create Ansible playbooks, you should commit those changes back to the repository.
I won’t specifically call on you to do that, so go ahead and keep that in mind as we go. When you create
a new playbook, add it to the repository, then commit it. If you make changes to existing files, commit
those changes. Be sure to use the git push command to push your changes back to the repository.
For example, if you created a file inside the repository named myplaybook.yml, you would execute
commands such as these:

git add myplaybook.yml
git commit -m "insert message about the commit here"
git push origin main

Go ahead and practice this a bit before you move on. Even if you don’t use Ansible in production,
understanding the basics of Git is invaluable, as you’ll almost definitely need it at some point in your
career.

Getting started with Ansible
The first thing to know about Ansible is that it changes constantly. New versions with exciting features
are released regularly, and it shows no sign of slowing down whatsoever. There is a lot of excitement
around this technology, so it’s regularly improving.

The reason I’m bringing this up is that although the examples in this book have been written for (and
tested on) Ubuntu 22.04, new versions of Ansible are released regularly outside of Ubuntu’s repositories,
and not only include new features but syntax changes as well. For our needs in this book, the version of
Ansible included in the repositories should be more than fine. However, if you were to look at examples
of Ansible playbooks online, they might be written for a newer version (or even an older version). If
for any reason you have an issue with a particular example written for Ansible, a good first step in
terms of troubleshooting is to compare the version of Ansible the tutorial was written for against the
version installed. When it comes to Ubuntu 22.04, the version of Ansible that’s made available is 2.10.x.
You can install a newer version of Ansible from the official website, but for the purposes of this book,
we’ll use the version that’s in the default repositories.

Go ahead and install ansible via apt:

sudo apt install ansible

Now you should have the ansible-playbook command available, which is the main binary that we’ll
be using as we explore Ansible. There are other commands that Ansible provides us, but we’re not
concerned with them.

In order to follow along with the remainder of this chapter, it’s recommended that you have at least
two servers to work with; the more the better. If you have a Virtual Machine (VM) solution such as
VirtualBox available, simply create additional VMs. To save time, consider cloning an existing VM
a few times (just make sure you don’t overload your computer/server by over-allocating resources).

Automating Server Configuration with Ansible320

The most common workflow of Ansible works something like this: you have a main server or workstation,
on which Ansible is installed. While you don’t need an agent on the clients, they will, however, need
OpenSSH installed and configured as that’s how Ansible communicates. To make things easy, it’s
recommended to have a dedicated Ansible user on each machine, and the Ansible user on the server
should be able to connect to each machine without a password. It doesn’t matter what you call the
Ansible user; you can simply use ansible or something clever. We covered how to create SSH keys in
Chapter 10, Connecting to Networks, so refer to that if you need a reminder. Creating users was covered
in Chapter 2, Managing Users and Permissions. In a nutshell, here are the things you should work on in
order to set up your environment for Ansible:

1.	 Install Ansible on a central server or workstation
2.	 Create a user for Ansible on each machine you want to manage configuration on
3.	 Create the same user on your central server or your local machine
4.	 Set up the Ansible user on the server so that it can connect to clients via SSH without a password
5.	 Configure sudo on the client machines so that the Ansible user can execute commands with

sudo with no password

In previous chapters, we covered how to create users and SSH keys, but we have yet to cover the last
point. Assuming you named your Ansible user ansible, create the following file:

/etc/sudoers.d/ansible

Inside that file, place the following text:

ansible ALL=(ALL) NOPASSWD: ALL

Next, we need to ensure that the file is owned by root:

sudo chown root:root /etc/sudoers.d/ansible

Finally, we need to adjust the permissions of the file:

sudo chmod 440 /etc/sudoers.d/ansible

Go ahead and test this out. On the server, switch to the ansible user:

sudo su - ansible

Then, to test this out, use SSH to execute a command on a remote machine:

ssh 192.168.1.123 sudo ls /etc

How does this work? You may or may not know this, but if you use SSH to execute just one command,
you don’t necessarily need to set up a persistent connection. In this example, we first switch to the
ansible user. Then, we connect to 192.168.1.123 (or whatever the IP address of the client is) and
tell it to execute sudo ls /etc. Executing an ls command with sudo may seem like a silly thing to
do, but it’s great—it allows you to test whether or not sudo works without doing anything potentially
dangerous. Listing the contents of a directory is about as innocent as you can get.

Chapter 15 321

It may seem like an awful lot of steps in order to get configuration management working. But make
sure you think with a system administrator’s mindset—these setup tips can be automated. In my case,
I have a Bash script that I run on each of my servers that sets up the required user, keys, and sudo
access specifically for Ansible. Anytime I want to add a new server to Ansible, I simply run that script
on the machine just once, and from that point forward Ansible will take care of the rest.

What should have happened is that the command should have executed and printed the contents of /
etc without prompting you for a password. If this doesn’t work, make sure you have completed each
of the recommended steps. You should have an ansible user on each machine, and that user should
have access to sudo without a password since we created a file for that user in /etc/sudoers.d. If the
SSH portion fails, check the log file at /var/log/auth.log for clues, as that is where related errors
will be saved. Once you have met these requirements, we can get automating with Ansible!

Making your servers do your bidding
As server administrators, we’re control freaks. There are few things more exciting than executing a
command and having every single server obey it and carry it out. Now that we have Ansible set up,
that’s exactly what we’re going to do. I’m assuming by now you have some machines you want to
configure, and they’re all set up to communicate via SSH with your central server. Also, as I mentioned
before, I highly recommend you utilize something like Git to store your configuration files, but that’s
not required for this section.

Setting up an inventory file and configuring Ansible settings
First, we’ll need an inventory file, which is a special text file Ansible expects to find that tells it where
to find servers to connect to. In previous versions, the process of installing the ansible package would
provide you with some default configuration, located in /etc/ansible. In Ubuntu 22.04, at least with
the version of Ansible that’s offered in the default repositories, this is no longer the case. For our
purposes, that’s fine, though – we were going to create an empty configuration anyway.

First, let’s create the directory that we’ll be using for the configuration on our “controller” server (the
one we’ll be using to control, or “configure,” other nodes):

sudo mkdir /etc/ansible

After that, we can create an empty inventory file:

sudo touch /etc/ansible/hosts

There’s actually a way to avoid needing to create an inventory file, which we’ll get into later in this
chapter.

We should also make sure that only the Ansible user account can read it. Execute the following command
to change ownership (replace ansible with whatever user account you chose as your Ansible account
if you’re using something different):

sudo chown ansible /etc/ansible/hosts

Automating Server Configuration with Ansible322

Next, modify the permissions such that only the owner can view or change the file:

sudo chmod 600 /etc/ansible/hosts

Next, let’s edit the /etc/ansible/hosts file and populate it. If you did end up having a default hosts
file created for you when you installed Ansible, you can simply empty the file since we’ll be creating
our own anyway. What we’ll do with this file is populate it with the IP addresses of the servers we wish
to manage. Feel free to make a backup of the original host file, if it already exists. For right now, we’re
only including the IP addresses of the nodes we want to control with Ansible, so the file will end up
looking similar to the following:

192.168.1.145
192.168.1.125
192.168.1.166

That’s it; it’s simply just a list of IP addresses. I bet you were expecting some long configuration with
all kinds of syntax requirements? Sorry to disappoint. All you need to do is copy a list of IP addresses
of the servers you want to manage into this file. If you have DNS names set up for the machines you
want to configure, you can use them instead:

myhost1.mydomain.com
myhost2.mydomain.com
myhost3.mydomain.com

Since Ansible understands IP addresses as well as DNS names, we can use either or a combination
of both in order to set up our inventory file. We can also split up our hosts within the inventory file
between different roles, but that is outside the scope of this book. I do recommend learning about
roles in Ansible if you wish to take your knowledge further (see the Relevant videos section for more
information).

If you decide not to store your inventory file at /etc/ansible/hosts, you must tell Ansible where to
find it. There is another important file to Ansible, and that is its configuration file, located at /etc/
ansible/ansible.cfg. Inside this file, we can fine-tune Ansible to get the best performance possible.
While we won’t go over this file in detail, just know that you can seriously increase the performance
of Ansible by fine-tuning its settings, and Ansible will read settings from its configuration file every
time it runs. In our case, if we wish to store our inventory file somewhere other than /etc/ansible/
hosts, we will need to add the following two lines to this file (most likely, you’ll need to create this
file since it probably doesn’t already exist at this point):

[defaults]
inventory = /path/to/hosts
remote_user = jay

With the first setting, we’re basically telling Ansible where to find its inventory file. There are many
more configuration items we can place in the ansible.cfg file to configure it further, but that’s all
we need to configure right now. With the second line, we’re setting a default user to use for Ansible
playbooks, which must exist on any servers you wish to manage with it.

Chapter 15 323

Similar to the inventory file, Ansible also checks the local directory for a file named ansible.cfg to
fetch its configuration, so you could actually include the configuration file in the Git repository as
well, and then execute Ansible commands from within the repository directory. This works because
Ansible will check for the existence of a configuration file in your current working directory, and use
it if it’s found there. You may want to be careful about including your configuration file in your Git
directory, though. While it’s not as private as the inventory file, it can potentially contain privileged
information. Therefore, you may want to keep the file at /etc/ansible/ansible.cfg and manage it
outside of the Git repository if you include anything private in the file (for example, encryption keys).

Now we can test out whether or not Ansible is working at this point. Thankfully, this is also easy. Just
simply execute the following command:

ansible all -m ping

The results should look similar to this:

Figure 15.2: Testing Ansible

Depending on how many servers you have set up, you should see that output one or more times. You
may think that all that command has done is a simple ping test, but ping means something different
to Ansible than usual. It’s actually attempting to make a connection to the server, to test its availability.
If it fails, double-check that the hosts are available over SSH. Success here simply means that Ansible
is able to communicate with your hosts via SSH. Now that the communication exists, we can build
some actual configuration.

Configuring client servers
Ansible uses something called a playbook in order to store configuration. A playbook is essentially
a file in the YAML format with instructions that Ansible understands, that are interpreted as a set of
tasks run against hosts A full guide on YAML isn’t something we’ll be covering here – you don’t have
to master this format or even fully understand it to use it with Ansible. That will automatically come
in time. The takeaway here is that YAML is simply the format that Ansible uses, and it’s a file format
that’s not specific to Ansible itself. A playbook is basically just a collection of instructions written in
YAML format, and each individual instruction is known as a play.

Automating Server Configuration with Ansible324

You can think of this with the analogy of a sport, like football. Although I don’t know the first thing
about football, I do know that football coaches have playbooks containing things that they want their
players to do, and each action by a player is a play. It’s the same concept here.

Let’s write our first playbook. Create a file called packages.yml in your local Ansible directory. You
can fill it with this content (make sure you include the hyphens):

- hosts: all
 become: true
 tasks:
 - name: Install htop
 ansible.builtin.apt:
 name: htop

We can run this playbook with the following command:

ansible-playbook packages.yml

This will produce an output that looks something like the following:

Figure 15.3: Ansible in action

Just like that, all of the hosts in your inventory file will have the htop package installed. It really doesn’t
matter which package you install, so long as it exists in the repositories; I just used htop as a simple
example. But once you run it, you should see an overview of what was changed. Ansible will tell you
how many items your hosts updated, how many tasks have failed, and how many targets weren’t
reachable at the time the playbook was run.

Let’s take a closer look at what the instructions in this sample playbook do. The hyphens at the beginning
are part of the YAML format, so we really don’t need to get into that. Spacing is very important with
the YAML format, as you need to be consistent throughout.

Chapter 15 325

In my examples, I am inserting two spaces underneath each heading. A heading starts with a hyphen:

- hosts: all

Here, we declare which hosts we want to have the commands apply to. I added all here, which basically
runs the configuration against every host in the inventory file. With advanced usage, you can actually
create roles in Ansible and divide your hosts between them, such as a web server, database server,
and so on. Then, you can apply configuration only to hosts inside a particular role. We’re not going to
get into that in this chapter, but just know that it is possible.

The next line is become:

become: true

This line is basically Ansible’s term for describing sudo. We’re telling Ansible to use sudo to execute
the commands, since installing packages requires root privileges. The next part of the playbook is
as follows:

tasks:

This line starts the next section, which is where we place our individual tasks. Next, we name our new
task (Ansible refers to a “task” as a “play”):

- name: Install htop

With name, we give the play a name. This isn’t required but you should always include it. The importance
of this is that whatever we type here is what is going to show up in the logs if we enable logging, and
will also print to the terminal as the play runs. We should be descriptive here, as it will certainly help
if a play fails and we need to locate it in a log file that has hundreds of lines. Next, we utilize the apt
module and tell it to install a package, htop in this case:

ansible.builtin.apt:
 name: htop

We use the ansible.builtin.apt module simply because Ubuntu uses the apt command to manage
packages, but modules exist for all of the popular Linux distributions. Ansible’s support of package
managers among various distributions is actually fairly extensive. All of the major distributions, such
as Red Hat, Fedora, openSUSE, Arch Linux, and Debian, are supported (and those are just the ones
I’ve used in my lab off the top of my head). If you want to execute a play against a server that’s running
a distribution other than Ubuntu, simply adjust ansible.builtin.apt to something else, such as
ansible.builtin.dnf.

Since Ansible allows you to use additional resources from Galaxy, a site that’s specific to Ansible that
gives you access to additional capabilities, we use ansible.builtin.apt instead of simply apt in order
to clarify that we’re using a built-in module, not something we’re using from an external resource.

This new naming scheme is new since the previous edition of this book was published. The older
versions of the playbooks should still work just fine, but since the naming scheme has changed since
then, we’ll use the new naming style going forward.

Automating Server Configuration with Ansible326

You can, of course, add additional packages by simply adding more plays to the existing playbook:

- hosts: all
 become: true
 tasks:
 - name: Install htop
 ansible.builtin.apt:
 name: htop
 - name: Install git
 ansible.builtin.apt:
 name: git
 - name: Install vim-nox
 ansible.builtin.apt:
 name: vim-nox

However, that’s not an extremely efficient method. I’ll show you how we can combine multiple similar
plays in one play. Sure, you don’t have to, but I think you’ll agree that this method looks cleaner:

- hosts: all
 become: true
 tasks:
 - name: Install packages
 ansible.builtin.apt:
 name:
 - git
 - htop
 - vim-nox

With the new format, we include just one play to install multiple packages. This is similar to the
concept of a for loop if you have programming knowledge. For every package we list, it will run the
ansible.builtin.apt module against it. If we want to add additional packages, we just add a new
one to the list. Simple.

We can also copy files to our hosts. Consider the following example playbook, which I will call
copy_files.yml:

- hosts: all
 become: true
 tasks:
 - name: copy SSH motd
 ansible.builtin.copy:

Chapter 15 327

 src: motd
 dest: /etc/motd

Then, you can run this playbook with the following command:

ansible-playbook copy_files.yml

Inside the same directory, create a file called motd and place any text in it. It doesn’t really matter what
you type into the file, but this file in particular acts as a message that is printed any time a user logs
into a server. When you run the playbook, it will copy that file over to the server at the destination
you configured. Since we created a message of the day (motd), we should see the new message the
next time we log in to the server.

By now, you’re probably seeing just how useful Ansible can be. Sure, we only installed a few packages
and copied one file. We could’ve performed those tasks easily ourselves without Ansible, but this is
only a start. Ansible lets you automate everything, and we have to start somewhere. You can tell it to
not only install packages and copy files, but you can also use it to start services, apply configuration
file templates, and much more—it will surprise you. In fact, you can go as far as to automate the setup
of a web server, a user’s workstation... you name it!

Putting it all together – automating web server
deployment
Speaking of automating the setup of a web server, why don’t we go ahead and do exactly that? It’ll be
another simple example, but it will serve you well if we demonstrate more of what Ansible can do. We
will set up a playbook to perform the following tasks:

1.	 Install Apache
2.	 Start the apache2 service
3.	 Copy an HTML file for the new site

First, let’s set up the playbook to simply install Apache. I called mine apache.yml, but the name is
arbitrary:

- hosts: all
 become: true
 tasks:
 - name: Install Apache
 ansible.builtin.apt:
 name: apache2

No surprises here; we’ve already installed a package at this point. Let’s add an additional instruction
to start the apache2 service:

- hosts: all

Automating Server Configuration with Ansible328

 become: true
 tasks:
- name: Install Apache

ansible.builtin.apt:
 name: apache2

- name: Start the apache2 services
ansible.builtin.service:

 name: apache2
 state: started

So far, the syntax should be self-explanatory. Ansible has a service module, which can be used to
start a service on a host. In this case, we start the apache2 service (the service would’ve already been
started when apache2 was installed, but at least this way we can make sure it’s started). You do have
to know the service name ahead of time, but you don’t have to pay attention to what utility needs to
be used in the background to start the service. Ansible already knows how to start services on all the
popular distributions and takes care of the specifics for you in the background.

Having a play that starts apache2 may seem a bit redundant since most packages you install on an
Ubuntu server will automatically start the associated service as soon as it’s installed (and apache2 is
no exception). But when we write automation code, it’s important to be clear and explicit about what
the desired end result is supposed to be. Even though apache2 will automatically start once Ansible
installs the package, we’re adding a service play to clarify the fact that it needs to be running, so
anyone looking at it will know what’s expected. Also, we can make sure apache2 is enabled by adding
one more line to that section of the code (note the bold line):

- name: Start the apache2 services
ansible.builtin.service:

 name: apache2
 state: started
 enabled: true

I’ll leave it up to you whether or not to include that extra line, but the takeaway is to be as clear and
direct as you can when writing automation, so there’s no confusion about what the end result is
supposed to be.

Well, that was easy. Let’s create a simple web page for Apache to serve for us. It doesn’t need to be
fancy, we just want to see that it works. Create the following content inside a file named index.html
in the same working directory as the other Ansible files:

<html>
<title>Ansible is awesome!</title>
<body>

<p>Ansible is amazing. With just a small text file, we automated the setup
of a web server!</p>
</body>
</html>

Chapter 15 329

As you can see, that HTML file is fairly lame, but it will work just fine for what we need. Next, let’s add
another instruction to our Apache playbook:

- hosts: all

become: true
tasks:
- name: Install Apache

ansible.builtin.apt:
name: apache2

- name: Start the apache2 services
ansible.builtin.service:

 name: apache2
 state: started

- name: Copy index.html
ansible.builtin.copy:

 src: index.html
 dest: /var/www/html/index.html

With the copy module, we can copy a file from our local Ansible directory to the server. All we need
to do is provide it with a source (src) and destination (dest).

Let’s go ahead and run the new playbook:

ansible-playbook apache.yml

This will produce an output like the following:

Figure 15.4: Installing Apache and copying a default site file with Ansible

Automating Server Configuration with Ansible330

Within a few minutes, you should have at least one web server configured by Ansible. In a real
production environment, you would’ve only run this on servers within a specific role, but roles are
beyond the scope of this chapter. But from the simple playbook we created, you should be able to see
the power of this amazing piece of software:

Figure 15.5: An example of a web page provisioned by Ansible

At this point in our exploration into configuration management with Ansible, we’ve installed packages,
started services, and copied files. Admittedly, this isn’t much, but it’s really all you need in order to
practice the basics. The documentation for Ansible includes guides on how to do all sorts of things,
and you’ll be able to utilize the various modules it provides to perform many different tasks.

To explore Ansible further, I recommend that you think about things you do on a regular basis that
you would benefit from automating. Things like installing security updates, creating user accounts,
setting passwords, and enabling services to automatically start at boot time are tasks that are easy to
get started with.

In addition, you may want to consider adding a simple cron job to run under your ansible user, to run
the playbook every hour or so. We covered cron jobs in Chapter 7, Controlling and Managing Processes.
Adding a cron job shouldn’t add any overhead from a resource perspective, since Ansible won’t actually
be doing much unless you add a new command. In more advanced usage, you’ll want to have Ansible
check out code from a repository and then apply the configuration if it has changed. This way, all you
have to do is commit to a Git repository and all of your servers will download the configuration and
run it at the next scheduled time. One of the things I love most about Ansible is that it’s easy to get
started, but you’ll continue to find new ways to use it and benefit from it.

Using Ansible’s pull method
The way we set up our Ansible configuration in the previous section works very well if we have a list
of specific servers that we want it to manage. To add a new server, we create the user account and set
up the SSH configuration on the new host, and then add it to the inventory file. If we decommission
that server, we simply remove it from the inventory file. This works well in a static environment,
where servers you deploy typically stay around for a while. In a dynamic environment, though, this
may not work as well.

Chapter 15 331

Dynamic environments are very typical in the cloud. With cloud computing, you typically have one or
more virtual servers that provide a service to your company or users. These servers may come and go
at any time. With dynamic environments, servers will come online as needed to handle load and will
also get decommissioned automatically as load decreases. Therefore, you never really know when a
server is going to come online, and having to manually provision a server in such an environment is
inefficient.

For this reason, Ansible’s inventory file may not be a good fit for dynamic infrastructure. There
certainly are ways to make Ansible’s inventory work in such an environment, as you can actually
replace the inventory file with an executable script that can make API calls and customize itself for
your infrastructure if you so desire. However, that’s out of the scope of this book, and there’s an easier
method anyway.

As we’ve seen, Ansible uses an inventory file and connects to every server listed in that file. However,
Ansible also features a pull mode, where instead of having a central server that connects to other
machines, each server in pull mode will actually run Ansible against itself. In my opinion, this is a
great way to use Ansible and it doesn’t seem to get the attention it deserves. First, I’ll explain the theory
of how it works, and then we can work through an actual example.

With pull mode, you’ll want to have your Ansible playbooks inside a Git repository. This repository
must be accessible from the servers you will manage. For example, if you store the Git repository on
GitHub, you’ll want to make sure the servers can access GitHub externally. If you host your own Git
server internally, you’ll want to make sure your servers are able to access it through your firewall or
any security rules you may have in place.

Pull mode is used with the ansible-pull command, which comes bundled with Ansible. The syntax
looks like the following:

ansible-pull -U https://github.com/myusername/ansible.git

Of course, you’d replace the URL with the actual HTTP or HTTPS URL to your Git repository. However,
that’s basically it. The ansible-pull command simply expects the -U option (short for URL) along
with the URL to a Git repository.

In order for this to work, you’ll need a playbook inside the repository with a special name, local.yml.
If you don’t declare a specific playbook with Ansible, it will expect to find a playbook with that name
inside the root of the repository. If you choose to use a name for the main playbook that’s something
other than local.yml, you’ll need to specify it:

ansible-pull -U https://github.com/myusername/ansible.git myplaybook.yml

In this example, the ansible-pull command will cache the Git repository located at the specified
URL locally, and run the playbook myplaybook.yml that you would have inside the repository. One
thing you may find is that Ansible might complain about not finding an inventory file, even though
that’s the entire point of the ansible-pull command. You can ignore this error. This will likely be
fixed in Ansible at some point in the future, but as of the time of this writing, it will print a warning
if it doesn’t detect an inventory file.

Automating Server Configuration with Ansible332

With the theory out of the way, let’s work through an actual example. If you’ve been following along
so far, we created a playbook in the previous section that automates the deployment of a hypothetical
web server. We can reuse that code. However, it’s best practice to have a file with the name local.yml,
so you can simply rename the apache.yml playbook we created earlier to local.yml. There’s one small
change we need to make to the file, which I’ve highlighted here:

- hosts: localhost
 become: true
 tasks:
 - name: Install Apache
 ansible.builtin.apt: name=apache2
 - name: Start the apache2 services
 ansible.builtin.service:
 name: apache2
 state: started
 - name: Copy index.html
 ansible.builtin.copy:
 src: index.html
 dest: /var/www/html/index.html

Since we’re executing the playbook locally (without SSH) we changed the hosts: line to point to
localhost, to instruct Ansible that we want to execute the commands locally rather than remotely.
Now, we can push this playbook to our Git repository and execute it directly from the repository URL.

Pay careful attention to the hosts: line of any playbook you intend to run. If you are using the pull
method, this line will need to be changed from hosts: all to hosts: localhost, the reason being,
we are executing the playbooks directly on localhost, rather than from a remote SSH connection. If
you don’t make this change, you’ll see an error similar to the following:

ERROR! Specified hosts and/or --limit does not match any hosts

Before you run the playbook, you’ll want to first switch to your Ansible user, since the playbook will
need to be run as a user with sudo privileges since it will execute system-level commands:

sudo su - ansible

Then, execute the playbook:

ansible-pull -U https://github.com/myusername/ansible.git

If we kept the name as apache.yml, we would just specify that:

ansible-pull -U https://github.com/myusername/ansible.git apache.yml

Chapter 15 333

Keep in mind that since ansible-pull executes playbooks directly on localhost, the playbook must
be executed by a user that has access to sudo. If sudo is not configured to run as that user without a
password, the playbook will fail as it’s not interactive (it won’t ask for the password). You can also use
sudo in front of the ansible-pull command and provide the password before it runs, but that won’t
work if you set it up to run automatically via cron.

If all goes according to plan, the playbook repository should be cached to the server, and the instructions
carried out. If there is an error, Ansible is fairly good about presenting logical error messages. As long
as the user has permission to execute privileged commands on the server, the required files are present
in the repository, and the server has access to download the repository (a firewall isn’t blocking it),
then the playbook will run properly.

When it comes to implementing the pull method in production across various server types, there
are several ways we can go about this. One way is to have a separate playbook per server type. For
example, perhaps you’d have an Apache playbook, as well as playbooks specific to database servers,
file servers, user workstations, and so on. Then, depending on the type of server you’re deploying,
you’d specify the appropriate playbook when you called the ansible-pull command. If you’re using
a service such as cloud computing, you can actually provide a script for each server to execute upon
creation. You can then instruct the service to automatically run the ansible-pull command any time
a new server is created. In AWS, for example, you can use a feature known as user data to place a script
for a server to execute when it’s launched for the first time. This saves you from having to provision
anything manually. For this to work, you would first include a command for the server to install
Ansible itself, and then the next command would be the ansible-pull command along with the URL
to the repository. Just those two lines would completely automate the installation of Ansible and the
application of your playbook. Try to think of the possibilities ahead of time so you can understand
the many ways that automation can benefit you.

While provisioning new servers properly and efficiently is very important, so too is maintaining your
existing servers. When you need to install a new package or apply a security update, the last thing you
want to do is connect to all of your servers manually and update them one by one. The ansible-pull
command allows simple management as well; you just simply run the command again. Every time
you run ansible-pull, it will download the latest version of the code within your repository and run
it. If there are any changes, they will be applied, while things that have already been applied will be
skipped. For example, if you include a play to install the apache2 package, Ansible won’t reinstall
the package if you run the playbook a second time; it will skip that play since that requirement has
already been met.

One trick worth knowing with ansible-pull is the -o option. This option will ensure that the playbook
inside the repository is only run if there have been any actual changes to the repository. If you haven’t
committed any changes to the repository, it will skip the entire thing. This is very useful if you set up
the ansible-pull command syntax to be run periodically via cron, for example, every hour.

If you don’t include the -o option, Ansible will run the entire playbook every hour. This will consume
valuable CPU resources for no good reason at all. With the -o option, Ansible will only use as much
CPU as required for simply checking the repository for changes. The playbook will only be run if you
actually commit changes to the repository.

Automating Server Configuration with Ansible334

The introduction to Ansible within this chapter has been very basic, as we’ve only used the very core of
the required components. By looking deeper into Ansible, you’ll find more advanced techniques, and
some more clever ways to implement it. Examples include automating firewall rules, security patches,
and user passwords, as well as having Ansible send you an email any time a server is successfully
provisioned (or even when that fails). Basically, just about anything you can do manually, you can
automate with Ansible. In the future, I recommend looking at server administration with an automation
mindset. As I’ve mentioned several times before, if you will need to perform a task more than once,
automate it. Ansible is one of the best ways of automating server administration.

Summary
In this chapter, we took a look at configuration management using Ansible. Ansible is an exciting
technology that is exploding in popularity. It gives you the full power of configuration management
utilities such as Chef or Puppet, without all the resource overhead. It allows you to automate just
about everything. During our exploration, we walked through installing packages, copying files, and
starting services. Near the end of the chapter, we worked through an example of using Ansible to
provision a simple web server, and we even explored the pull method, which is very useful in dynamic
environments. These concepts form the basis of knowledge that can be expanded to automate more
complex rollouts.

The next chapter will be fun: we’ll set up our very own virtualization server with KVM. This is one of
my favorite topics, and I’m sure you’ll enjoy it too. See you there!

Relevant videos
•	 Git Essentials (LearnLinuxTV): https://linux.video/git-essentials
•	 Getting Started with Ansible (LearnLinuxTV): https://linux.video/learn-ansible
•	 Ansible workstation/laptop configuration (LearnLinuxTV):

https://linux.video/ansible-workstation

•	 Ansible Vault (LearnLinuxTV): https://linux.video/ansible-vault
•	 Ansible Pull (LearnLinuxTV): https://linux.video/ansible-pull

Further reading
•	 Ansible documentation: https://learnlinux.link/ansible-docs
•	 Ansible Roles documentation: https://learnlinux.link/reuse-roles
•	 Ansible config file documentation article: https://learnlinux.link/a-config
•	 ansible-pull documentation: https://learnlinux.link/a-pull
•	 How to manage your workstation configuration with Ansible: https://learnlinux.link/a-ws
•	 Git basics: https://learnlinux.link/git-book
•	 Setting up Git (GitHub): https://learnlinux.link/setup-git

https://linux.video/git-essentials
https://linux.video/learn-ansible
https://linux.video/ansible-workstation
https://linux.video/ansible-vault
https://linux.video/ansible-pull
https://learnlinux.link/ansible-docs
https://learnlinux.link/reuse-roles
https://learnlinux.link/a-config
https://learnlinux.link/a-pull
https://learnlinux.link/a-ws
https://learnlinux.link/git-book
https://learnlinux.link/setup-git

Chapter 15 335

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

16
Virtualization

There have been a great many advancements in the IT space in the last few decades, and a few
technologies have come along that have truly revolutionized the technology industry. I’m sure few
would argue that the internet is by far the most revolutionary technology to come around, but another
technology that has created a paradigm shift in IT is virtualization. This concept changed the way we
maintain our data centers, allowing us to segregate workloads into many smaller machines being run
from a single server. This allows us to get even more use out of our hardware. Since Ubuntu features
the latest advancements of the Linux kernel, virtualization support is actually built right into it. After
installing just a few packages to allow us to interact with the virtualization features, we can create
virtual machines on our Ubuntu server without the need for a pricey license agreement or support
contract. In this chapter, I’ll walk you through setting up your own Ubuntu-based virtualization solution.
Along the way, I’ll walk you through the following topics:

•	 Prerequisites and considerations
•	 Setting up a virtual machine server
•	 Creating virtual machines
•	 Bridging the virtual machine network
•	 Simplifying virtual machine creation with cloning
•	 Managing virtual machines via the command line

In order to get started, we’ll need a server to use for this task, and we’ll first have a discussion on some
considerations to make when setting up a server for this purpose.

Prerequisites and considerations
I’m sure many of you have already used a virtualization solution before. In fact, I bet a great many
readers are following along with this book while using a Virtual Machine (VM) running in a solution
such as VirtualBox, Parallels, VMware, or one of the others. Those applications and others like them
are great for testing Ubuntu or other operating systems on your desktop or laptop. In this section, we’ll
set up a VM server that can act as a centrally available server on which to run VMs.

Virtualization338

This will be easier than you may think—Ubuntu has virtualization built right in. This comes in the
form of a dynamic duo consisting of Kernel-based VM (KVM) and Quick Emulator (QEMU), which
together form a virtualization suite that enables Ubuntu (and Linux in general) to run VMs without
the need for a third-party solution. KVM is the feature that is built right into the Linux kernel that
performs the magic under the hood. It handles the low-level instructions in the kernel that are needed
to separate tasks between those run on a physical host and on a guest VM. QEMU is also important,
as it emulates hardware components that are generally found in physical servers. The combination
of KVM and QEMU makes up the virtualization solution that can be enabled on an Ubuntu server to
turn it into a host for VMs.

To be fair, you can set up something like VirtualBox on your Ubuntu Server to accomplish the same thing,
and end up with a centrally available virtualization server. And that’s perfectly valid, there’s certainly
nothing wrong with running VirtualBox this way, and many people do. But there are improvements
to be had by utilizing a built-in system, and KVM offers a very fast interface to the Linux kernel to
run your VMs with near-native speeds, depending on your use case. QEMU/KVM (which I’ll refer to
simply as KVM going forward) is about as native as you can get.

I bet you’re eager to get started, but there are a few quick things to consider before we dive in. First, of
all the activities I’ve walked you through in this book so far, setting up our own virtualization solution
will be the most expensive from a hardware perspective. The more VMs you plan on running, the
more resources your server will need to have available (especially RAM). Thankfully, most computers
nowadays ship with 8 GB of RAM at a minimum, with 16 GB or more being fairly common. With most
modern computers, you should be able to run VMs without too much of an impact. Depending on
what kind of machine you’re using, the CPU and RAM may present bottlenecks, especially when it
comes to legacy hardware.

For the purposes of this chapter, it’s recommended that you have a PC or server available with a
processor that’s capable of supporting VM extensions. A good majority of CPUs on computers nowadays
offer this, though some may not. To be sure, you can run the following command on the machine
you intend to host the KVM VMs on in order to find out whether your CPU supports virtualization
extensions:

egrep -c '(vmx|svm)' /proc/cpuinfo

A result of 1 or more means that your CPU does support virtualization extensions. A result of 0 means
it does not:

Figure 16.1: Checking the CPU for compatibility with virtualization

Chapter 16 339

Even if your CPU does support virtualization extensions, it’s often the case that it’s disabled by default
with most end user PCs sold today, and even some servers. To enable these extensions, you may need
to enter the BIOS setup screen for your computer and enable the option. Depending on your CPU
and chipset, this option may be named something similar to “virtualization support,” under a more
technical name such as VT-x, AMD-V, or another verbiage. Unfortunately, I won’t be able to walk you
through how to enable the virtualization extensions for your hardware, since the instructions will
differ from one machine to another. If in doubt, refer to the documentation for your hardware.

One final note: I’m sure many of you are using VirtualBox, as it seems to be a very popular solution
for those testing out Linux distributions (and rightfully so; it’s great!). However, you can’t run both
VirtualBox and KVM VMs on the same machine simultaneously. You can certainly have both solutions
installed on the same machine, but you just can’t have a VirtualBox VM up and running, and then
expect to also be able to start up a KVM VM. The virtualization extensions of your CPU can only work
with one solution at a time.

Another consideration to bear in mind is the amount of space the server has available, as VMs can
take quite a bit of space. The default directory for KVM VM images is /var/lib/libvirt/images. If
your /var directory is part of the root filesystem, you may not have a lot of space to work with here.
One trick is that you can mount an external storage volume to this directory, so you can store your VM
disk images on another volume. Or you can simply create a symbolic link that will point this directory
somewhere else. We discussed symbolic links in Chapter 5, Managing Files and Directories. The choice
is yours. If your root filesystem has at least 10 GB available, you should be able to create at least one
VM without needing to configure the storage. I think it’s a fair estimate to assume at least 10 GB of
hard drive space per VM.

Setting up a virtual machine server
With all the discussion out of the way, let’s start the process and set up our virtualization server. Even
though KVM is built into the Linux kernel, we’ll still need to install some packages in order to properly
interface with it. Specifically, we’ll need to install several libvirt packages, as well as QEMU itself.
libvirt itself gives us access to manage virtualization platforms on our server, as it provides us with
a set of useful tools to manage our virtual machines.

These packages will require a decent number of dependencies, so it may take a few minutes for
everything to install:

sudo apt install bridge-utils libvirt-clients libvirt-daemon-system qemu-
system-x86

You’ll now have an additional service running on your server, libvirtd. Once you’ve finished installing
KVM’s packages, this service will be started and enabled for you. Feel free to take a look at it to see
for yourself:

systemctl status libvirtd

Virtualization340

You should see information on the state of the service, similar to the following:

Figure 16.2: Checking the status of the libvirtd unit after installing KVM-related packages

Let’s stop this service for now, as we have some additional configuration to do:

sudo systemctl stop libvirtd

Next, we’ll need to make sure we have two required groups on our server, kvm and libvirt. It’s quite
possible that the packages that we’ve installed have added these groups on our server already, so feel
free to check the contents of /etc/group and see if they’re there. If not, you can create them with the
groupadd command:

sudo groupadd kvm
sudo groupadd libvirt

Our primary user account should be a member of both groups. If your user isn’t already a member of
these, add your user to the required groups (substitute the username, jay, with yours):

sudo usermod -aG kvm jay
sudo usermod -aG libvirt jay

At this point, you may as well log out and then log in again to ensure the changes to your group
memberships have taken effect.

To ensure we’ll be able to manage virtualization properly, we should ensure that users of the kvm group
have access to the /var/lib/libvirt/images directory so that they’ll have access to the data that will
be stored in the directory. First, we’ll apply the kvm group to this folder:

sudo chown :kvm /var/lib/libvirt/images

Then, we’ll set the permissions of /var/lib/libvirt/images such that anyone in the kvm group will
be able to modify its contents:

sudo chmod g+rw /var/lib/libvirt/images

Chapter 16 341

With the initial packages and permissions in place, we can now start the libvirtd service:

sudo systemctl start libvirtd

Next, check the status of the service to make sure that there are no errors:

sudo systemctl status libvirtd

Now that we’ve configured the server, we can set up our workstation to be able to connect to it and
manage the virtualization implementation that we’ve set up. We’ll install a utility that will give us
a graphical user interface (GUI) through which we can perform administration tasks relating to
VMs. The utility we’ll be using for this purpose is known as Virtual Machine Manager abbreviated as
virt-manager. This utility is installed on Linux workstations, so you’ll need to install it on a laptop or
desktop that’s running a desktop variant of Linux. If you have a computer running Debian or Ubuntu,
the following command will install the packages that are required for this:

sudo apt install ssh-askpass virt-manager

If you use a distribution of Linux other than Ubuntu, Debian, or one based on them, then you may
need to consult the documentation for your distribution in order to install virt-manager. If you’re
not running Linux on your workstation at all, there is a suite of command-line utilities that can be
used to manage VMs that we’ll cover later in this chapter when we discuss this in the Managing virtual
machines via the command line section. If all else fails, you can install this utility inside a Linux VM
running on your workstation.

Next, open virt-manager on your administration machine. It should be located in the Applications
menu of your desktop environment, usually under the System Tools section of Virtual Machine
Manager. If you have trouble finding it, simply run virt-manager in your shell prompt. When you
first launch it, you may see the following error:

Figure 16.3: A possible error that may appear when first launching virt-manager

If you do see the error, simply dismiss it and don’t worry about it. By default, virt-manager defaults to
attempting to connect to an instance of libvirtd running on your local computer. Unless you are also
running KVM VMs locally and you’ve already set it up, this attempt will fail. But that doesn’t matter
for us, as we’ll be using virt-manager to manage VMs on our server.

Virtualization342

Once you’ve opened virt-manager, you’ll see the main window, which will look similar to the following:

Figure 16.4: The virt-manager application

The virt-manager utility is especially useful as it allows us to manage both remote and local KVM
servers. From one utility, you can create connections to any of your KVM servers, including one or
more external servers or localhost if you are running KVM on your laptop or desktop. To create a
new connection, click on File and select Add Connection. A new screen will appear, where we can
fill out the details of the KVM server we wish to connect to:

Figure 16.5: Adding a new connection to virt-manager

Chapter 16 343

In the Add Connection window, enter the details of your connection. In the screenshot, you can see
that I first checked the Connect to remote host over SSH box, which selects SSH as my connection
method, jay for my Username, and I’ve entered the IP address of my KVM server (172.16.250.19) in
the Hostname field. Fill out the specific details here for your KVM server to set up your connection. Keep
in mind that in order for this to work, the username you include here will need to be able to access the
server via SSH and have permissions to the hypervisor (be a member of the kvm and libvirtd groups
we added earlier), and the libvirtd service must be running on the server. If all of these requirements
are met, you’ll have a new connection set up to your KVM server when you click Connect. You might
see a pop-up dialog box with the text Are you sure you wish to continue connecting (yes/no)?.
If you do, type yes and press Enter.

Either way, you should be prompted for your password to your KVM server; type that in and press Enter.
You should now have a connection listed in your virt-manager application. You can see the connection
I added in the following screenshot; it’s the second one on the list. The first connection is localhost
since I also have KVM running on my local laptop in addition to having it installed on a remote server:

Figure 16.6: virt-manager with a new connection added

We’re almost at a point where we’ll be able to test our KVM server. But first, we’ll need a storage group
for ISO images, for use when installing operating systems on our VMs. When we create a VM, we can
attach an ISO image from our ISO storage group to our VM, which will allow it to install the operating
system.

Virtualization344

To create this storage group, open virt-manager if it’s not open already. Right-click on the listing for
your server connection, and then click on Details. You’ll see a new window that will show details
regarding your KVM server. Click on the Storage tab:

​​

Figure 16.7: The first screen while setting up a new storage pool

At first, you’ll only see the default connection we edited earlier. Now, we can add our ISO storage pool.
Click on the plus symbol in the bottom-left corner to create the new pool:

Figure 16.8: The storage tab of the virt-manager application

Chapter 16 345

In the Name field, type ISO. You can actually name it anything you want, but ISO makes sense,
considering it will be storing ISO images. For the Target Path field, set it to /var/lib/libvirt/images/
ISO unless you have a different directory in your filesystem for VM storage. Click Finish to finalize our
changes. We should also update the permissions for this directory so that it’s owned by the proper
user, and members of the kvm group have read and write access to it:

sudo chown root:kvm /var/lib/libvirt/images/ISO
sudo chmod g+rw /var/lib/libvirt/images/ISO

Congratulations! You now have a fully configured KVM server for creating and managing VMs. Our
server has a place to store VMs as well as ISO images. You should also be able to connect to this instance
using virt-manager, as we’ve done in this section. Next, I’ll walk you through the process of setting
up your first VM. Before we get to that, I recommend you copy some ISO images over to your KVM
server. It doesn’t really matter which ISO image you use—any operating system should suffice. If in
doubt, you can simply download Ubuntu Server 22.04 again like we did back in Chapter 1, Deploying
Ubuntu Server, when we set up our initial installation.

After you’ve chosen an ISO file and you’ve downloaded it, copy it over to your server via scp or rsync,
and move it into the /var/lib/libvirt/images/ISO directory. Both of those utilities were covered
in Chapter 12, Sharing and Transferring Files. Once the file has been copied over, you should have
everything you need for now.

Creating virtual machines
Now, the time has come to put your new VM server to the test and create a VM. At this point, I’m
assuming that the following is true:

•	 You’re able to connect to your KVM server via virt-manager
•	 You’ve already copied one or more ISO images to the server
•	 Your storage directory has at least 10 GB of space available
•	 The KVM server has enough free RAM to be associated with the VM you intend on creating

Go ahead and open up virt-manager, and let’s get started!

Virtualization346

In virt-manager, right-click your server connection and click on New to start the process of creating
a new VM. The default selection will be on Local install media (ISO image or CDROM); leave this
selection as is and click on Forward:

Figure 16.9: The first screen while setting up a new VM

On the next screen, click on Browse to open up another window where you can select the ISO image
you’ve downloaded:

Figure 16.10: Creating a new VM and setting the VM options

Chapter 16 347

If you click on your ISO storage pool, you should see a list of ISO images you’ve downloaded:

Figure 16.11: Choosing an ISO image during VM creation

If you don’t see any ISO images here, you may need to click the refresh icon. In my sample server,
I added an install image for Ubuntu Server 22.04, which you can see in the list. Again, you can use
whatever operating system you prefer. Click on the ISO image name to highlight it, and then click
Choose Volume to finalize the selection. Then, click Forward to continue to the next screen.

Virtualization348

Next, you’ll be asked to allocate RAM and CPU resources to the VM:

Figure 16.12: Adjusting the RAM and CPU count for the new VM

For most Linux distributions with no GUI, 2,048 MB is plenty (unless your workload demands more).
One CPU core is fine for lightweight workloads, but consider adding more if the documentation for
the application you intend on running recommends more than that. The resources you select here will
depend on what you have available on your host. Click on Forward when you’ve finished allocating
resources.

Next, you’ll allocate free disk space for your VM’s virtual hard disk:

Figure 16.13: Allocating storage resources for the new VM

Chapter 16 349

Set the disk image size to however much space you feel is relevant for the purpose of the VM. Click
on Forward when done.

Finally, you’ll name your VM:

Figure 16.14: Naming the new VM

Virtualization350

This won’t be the hostname of the VM; it’s just the name you’ll see when you see the VM listed in
virt-manager. When you click on Finish, the VM will start and it will automatically boot into the
install ISO you’ve attached to the VM near the beginning of the process. The installation process for
that operating system will then begin:

Figure 16.15: Installing Ubuntu Server inside a VM

When you click on the VM window, it will steal your keyboard and mouse and dedicate them to the
window. Press Ctrl and Alt at the same time to release this control and regain full control of your
keyboard and mouse.

Unfortunately, I can’t walk you through the installation process of your VM’s operating system since
there are hundreds of possible candidates you may be installing. If you’re installing another instance
of Ubuntu Server, you can refer back to Chapter 1, Deploying Ubuntu Server, where we walked through
the process. The process will be the same in the VM. From here, you should be able to create as many
VMs as you need and have resources for.

Next, we’ll look at some concepts surrounding networking for our VMs.

Chapter 16 351

Bridging the virtual machine network
Your KVM VMs will use their own network unless you configure bridged networking. This means your
VMs will get an IP address in their own network, instead of yours. By default, each machine will be
a member of the 192.168.122.0/24 network, with an IP address in the range of 192.168.122.2 to
192.168.122.254. If you’re utilizing KVM VMs on your personal laptop or desktop, this behavior might
be adequate. You’ll be able to SSH into your VMs via their IP addresses if you’re connecting from the
same machine the VMs are running on. If this satisfies your use case, there’s no further configuration
you’ll need to do.

Bridged networking allows your VMs to receive an IP address from the DHCP server on your network
instead of its internal one, which will allow you to communicate with your VMs from any other
machine on your network. This use case is preferable if you’re setting up a central VM server to
power infrastructure for your small office or organization, as your DHCP server can become a single
source of truth for all of the IP addresses in use in your organization. With a bridged network on your
VM server, each VM will be treated as any other network device. All you’ll need is a wired network
interface, as wireless cards typically don’t work with bridged networking.

That last point is very important. Some network cards don’t support bridging, and if yours doesn’t,
you won’t be able to use a bridge with your VM server unless you replace the network card. Before
continuing, you may want to ensure your network card supports bridging by reading the documentation
from the vendor of your device. In my experience, most wired cards made by Intel support bridging,
and most wireless cards do NOT. Make sure you back up the Netplan configuration file before changing
it, so you can revert back to the original version if you find that bridging doesn’t work for you.

To set up bridged networking, we’ll need to create a new interface on our server (the one that’s intended
for hosting virtual machines). Open up the /etc/netplan/00-installer-config.yaml file in your
text editor with sudo. We already talked about this file in Chapter 10, Connecting to Networks, so I won’t
go into too much detail about it here. Basically, this file includes the configuration for each of our
network interfaces, and this is where we’ll add our new bridged interface.

Make sure you make a backup of the original Netplan configuration file, and then replace its contents
with the following. Be sure to replace enp0s3 (the interface name) with your actual wired interface
name if it’s different. There are two occurrences of it in the file.

If you’re reading the digital version of this book, it’s highly recommended that you refrain from copying
and pasting the following code, but rather type it manually or copy it from the GitHub URL for the
book’s code bundle. The reason is that the YAML format is extremely picky about spaces, and if you
end up with a mix of spaces and tabs, the file might not work. When Netplan errors, it can be very
hard to figure out exactly what it’s complaining about, but spacing is quite often the culprit even if the
error output doesn’t lead you to believe so.

Virtualization352

Take your time while configuring this file. If you make a single mistake, you will likely not have network
access to the machine once it restarts:

network:
 ethernets:
 enp0s3:
 dhcp4: false
 bridges:
 br0:
 interfaces: [enp0s3]
 dhcp4: true
 parameters:
 stp: false
 forward-delay: 0

After you make the change, you can apply the new settings immediately, or simply reboot the server.
If you have a monitor and keyboard hooked up to the server, the following command is the easiest
way to activate the new configuration:

sudo netplan apply

If you’re connected to the server via SSH, restarting the network configuration will likely result in
the server becoming inaccessible because the SSH connection will likely drop as soon as the network
stops. This will disrupt the connection and prevent networking from starting back up. If you know
how to use screen or tmux, you can run the restart command from within either; otherwise, it may
just be simpler for you to reboot the server.

After networking restarts or the server reboots, check whether you can still access network resources,
such as pinging websites and accessing other network nodes from it. If you can, you’re all set. If you’re
having any trouble, make sure you edited the Netplan config file properly.

Now, you should see an additional network interface listed when you run ip addr show. The interface
will be called br0. The br0 interface should have an IP address from your DHCP server, in place of your
enp0s3 interface (or whatever it may be named on your system). From this point forward, you’ll be
able to use br0 for your VM’s networking, instead of the internal network. The internal KVM network
will still be available, but you can select br0 to be used instead when you create new VMs.

If you have a VM you’ve already created that you’d like to switch to utilize your bridged networking,
you can use the following steps to convert it:

1.	 First, open virt-manager and double-click on your VM. A new window with a graphical console
of your VM will open.

2.	 The second button along the top (which appears as a blue circle) will open the Virtual Hardware
Details tab, which will allow you to configure many different settings for the VM, such as the
CPU count, the RAM amount, the boot device order, and more.

Chapter 16 353

3.	 Among the options on the left-hand side of the screen, there will be one that reads NIC and
shows part of the VM’s network card’s MAC address. If you click on this, you can configure the
VM to use your new bridge by selecting it in the list.

4.	 Finally, click on Apply. You may have to restart the VM for the changes to take effect:

Figure 16.16: Configuring a VM to use bridge br0

While creating a brand-new VM, there’s an additional step you’ll need to do in order to configure the
VM to use bridged networking. In the last step of the process, where you set a name for the VM (as
shown in Figure 16.14), you’ll also see Advanced options listed near the bottom of the window. Expand
this, and you’ll be able to set your network name. Change the dropdown in this section to Specify
shared device name and set the bridge Name to br0. Now, you can click on Finish to finalize the VM
as before, and it should use your bridge whenever it starts up.

From this point onward, you should have not only a fully configured KVM server or instance but also
a solution that can be treated as a full citizen of your network. Your VMs will be able to receive an IP
address from a DHCP server and communicate with other network nodes directly. If you have a very
beefy KVM server, you may even be able to consolidate other network appliances into VMs to save
space, which is basically the entire purpose of virtualization.

Virtualization354

In the next section, we’ll simplify the process a bit by discussing the creation of a template that can
be used to act as a preconfigured starting point when setting up a new VM.

Simplifying virtual machine creation with cloning
Now that we have a KVM server, and we can spin up an army of VMs to do our bidding, we can try
and find clever ways of automating some of the workload of setting up a new VM. Every time we go to
create a new VM, we need to go through the entire installation process for its operating system again.
While this process is not difficult, we can certainly simplify it.

Most prominent virtualization solutions include a feature that allows you to create a VM Template.
With a template, we can create a VM once and get it completely configured. Then, we can convert it
into a template and use it as a base for all future VMs that will use that same operating system. This
saves a tremendous amount of time. You’ll probably recall the handful of screens you had to navigate
through to install Ubuntu Server in our first chapter. Imagine not having to go through that process
again (or at least not nearly as often).

Unfortunately, as great as QEMU/KVM is, it doesn’t have a template feature. This glaring hole in its
feature set is a sizable setback, but thankfully we Linux administrators are very clever, and we can
easily work around this to create a solution that’s essentially the same thing as templates.

Take the following screenshot, for example:

Figure 16.17: Virtual Machine Manager with a template listed

In the screenshot, you can see two VMs, ubuntu22.04 and ubuntu-server-template. Although its
name would lead you to believe otherwise, the latter is not a template at all; it’s just a VM. There’s
nothing really different about it, aside from the fact that it isn’t running. What it is, though, is a clever
workaround (if I do say so myself). If I want to create a new VM, I simply right-click on it, then click
Clone.

Chapter 16 355

The following window will appear:

Figure 16.18: Cloning a VM

When I click Clone in this window, after giving the new VM a name, I’ve made a copy of
it to serve as my new VM. It will use the original as a base, which I’ve already configured.
Since Ubuntu Server was installed on the “template,” I don’t need to do all that work again.

If you create virtual machine templates for production use, it’s highly recommended that
you check out cloud-init, which can help generalize its Ubuntu installation, which includes
regenerating its SSH host keys and the machine ID. cloud-init is beyond the scope of this
book but is definitely essential if you want to go even deeper into the topic of generating
virtual machine templates.

Virtualization356

Think about the tasks that you find yourself doing manually after setting up a new Ubuntu Server instance.
With a base VM being used as if it were a template, you can include any tweaks or customizations you
find yourself implementing right into that VM, so every time you clone it, all that work is done for you
automatically. So long as you maintain your base VM, you can spin up as many VMs from it as you
need and be able to do so with minimal configuration steps.

We’ve used virt-manager quite a bit in this chapter to customize our VMs, and while it’s a great utility,
we should also understand how to manage our infrastructure without it. In the next section, we’ll take
a look at some command-line examples of managing VMs.

Managing virtual machines via the command line
In this chapter, I showed you how to manage VMs with virt-manager. This is great if you have a
secondary machine with a GUI running Linux as its operating system. But what do you do if such a
machine isn’t available, and you’d like to perform simple tasks such as rebooting a VM or checking to
see which VMs are running on the server?

On the VM server itself, you have access to the virsh suite of commands, which will allow you to
manage VMs even if a GUI isn’t available. To use these commands, simply connect to the machine that
stores your VMs via SSH. What follows are some easy examples to get you started. Here’s the first one:

virsh list

This command will return an output like that shown in the following screenshot:

Figure 16.19: Showing running VMs with the virsh list command

With one command, we were able to list the VMs running on the server. In the example screenshot,
you can see that I have a single VM running. If you’d also like to see non-running instances, simply
add the --all option to the command.

We can manage the state of our VMs with any of the following commands:

•	 virsh start vm-name

•	 virsh shutdown vm-name

•	 virsh suspend vm-name

•	 virsh resume vm-name

•	 virsh destroy vm-name

•	 virsh undefine vm-name

Chapter 16 357

The command syntax for virsh is extremely straightforward. By looking at the previous list of
commands, you should be able to glean exactly what they do. The virsh commands allow us to do
things such as start, shutdown, suspend, and resume a VM. The virsh destroy command is potentially
destructive, as we’d use it when we want to halt a VM abruptly. It’s essentially the same result as pulling
a power cable from a physical server; it stops the instance immediately. You should only run that
command when you are dealing with an unresponsive VM. Finally, the virsh undefine command
deletes a VM, but you’ll have to remove any associated disk files with the rm command. The default
directory for disk files is /var/lib/libvirt/images, so you can look inside that directory for any disk
files that belong to the VM you’ve deleted (they will be named the same as the VM).

That’s not all virsh can do, however. We can actually create a VM with the virsh suite of commands as
well. Learning how to do so is a good idea if you don’t use Linux as your workstation operating system,
or you don’t have access to virt-manager for some reason. However, manually creating VM disk images
and configuration is outside the scope of this chapter. The main goal is for you to familiarize yourself
with managing VMs via virsh, and these simple basics will allow you to expand your knowledge further.

Summary
In this chapter, we took a look at virtualization, specifically with QEMU/KVM. We walked through the
installation of KVM and the configuration required to get our virtualization server up and running.
We walked through the process of creating a bridged network so that our VMs can be accessible from
the rest of the network and created our first VM. In addition, although QEMU/KVM doesn’t have its
own solution for templating, we worked around that and created our own solution.

In Chapter 17, Running Containers, we’ll take a look at containerization, which will include both Docker
and LXD. Stay tuned!

Relevant video
•	 cloud-init guide (LearnLinuxTV): https://linux.video/cloud-init

Further reading
•	 Ubuntu virsh documentation: https://learnlinux.link/u-virsh
•	 Mastering KVM Virtualization, by Vedran Dakic et al. (Packt Publishing):

https://learnlinux.link/kvm-book

https://linux.video/cloud-init
https://learnlinux.link/u-virsh
https://learnlinux.link/kvm-book

Virtualization358

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

17
Running Containers

The IT industry never ceases to amaze me. Back when the concept of virtualization came about, it
revolutionized the data center. Virtualization allowed us to run many small Virtual Machines (VMs)
on one server, effectively allowing us to consolidate the equipment in our server racks. And just
when we thought it couldn’t get any better, the concept of containerization took the IT world by
storm, allowing us to build portable instances of our software that not only improved how we deploy
applications but also changed the way we develop them. In this chapter, we will cover the exciting
world of containerization. This exploration will include:

•	 What is containerization?
•	 Understanding the differences between Docker and LXD
•	 Installing Docker
•	 Managing Docker containers
•	 Automating Docker image creation with Dockerfiles
•	 Managing LXD containers

To begin, let’s explore what containerization is, how it differs from virtualization, and some
considerations around how this technology might be implemented.

What is containerization?
In the last chapter, we covered virtualization. Virtualization allows us to run multiple virtual servers
on one physical piece of hardware. We allocate CPU, RAM, and disk space to these VMs, and they run
as if they were real servers. In fact, for all intents and purposes, a VM is a real server.

However, there are also weaknesses with VMs. Perhaps the most glaringly obvious is the fact that at
least some of the resources you allocate to a VM are likely being wasted. For example, perhaps you’ve
allocated 512 MB of RAM to a VM. What if the application only rarely uses more than 100 MB of RAM?
That means most of the time, 412 MB of RAM that could otherwise be used for a useful purpose is
just sitting idle. The same can be said of CPU usage. Nowadays, VM solutions do have ways of sharing
unused resources, but effectively, resource efficiency is a natural weakness of the platform.

Running Containers360

Containers, unlike VMs, are not actual servers. At least, not in the way you typically think about them
(in terms of hardware). While VMs typically have one or more virtualized CPUs, containers share
the CPU with the host. VMs also have their own kernel, but containers share the kernel of the host.
Containers are still segregated, though. Just as a VM cannot access the host filesystem, a container
can’t either (unless you explicitly set it up to do so).

What is a container, then? It’s probably best to think of a container as a filesystem rather than a VM. The
container itself contains a file structure that matches that of the distribution it’s based on. A container
based on Ubuntu Server, for example, will have the same filesystem layout as a real Ubuntu Server
installation on a VM or physical hardware. Imagine copying all the files and folders from an Ubuntu
installation, putting them all in a single segregated directory, and having the binary contents of the
filesystem executed as a program, without an actual operating system running.

To be fair, that description was an oversimplification of how containers actually run on an Ubuntu
server, as the technology utilizes the functionality of the Linux kernel to isolate various components
of a container from the rest of the system. However, a full discussion of those technologies is beyond
the scope of this book. But understanding that such isolation exists within containers is something
you should keep in mind, as keeping processes that are running within a container separate from
other processes running on the host server is an important benefit.

Portability is another strength of containerization. With a container, you can literally pass it around
to various members of your development team, and then push the container into production when
everyone agrees that it’s ready. The container itself will run exactly the same on each workstation,
regardless of which operating system the workstation uses. To be fair, you can export and import VMs
on any number of hosts, but containers make this process extremely easy. In fact, portability is at the
core of the design of this technology.

The concept of containerization is not necessarily new. When Docker hit the scene, it took the IT
world by storm, but it was by no means the first solution to offer containerization. LXC, and other
technologies, predate it. It was, however, a clever marketing tactic with a cool-sounding brand that
launched containerization into mainstream popularity. By no means am I saying that Docker is all
hype, though. It’s an awesome technology with many benefits. It’s definitely worth using, and you may
even find yourself preferring it to VMs.

The main difference with containerization is that each container generally does one thing. For example,
perhaps a container holds a hosted website or contains a single application. VMs are often created
to do many tasks, such as a web server that hosts ten websites. Containers, on the other hand, are
generally used for one task each, though depending on the implementation you may see others going
against this norm.

When should you use containers? I recommend you consider containers any time you’re running a web
app or some sort of service and you’d benefit from saving resources. The truth is, not all applications will
run well in a container, but it’s at least something to consider. Any time you’re running an application
that is typically accessed via a web browser, it’s probably better off in a container rather than a VM.
As an administrator, you’ll most likely experiment with the different tools available to you and decide
on the best tool for the job based on your findings.

Chapter 17 361

Now that we understand the core concepts surrounding containers, let’s explore the differences
between two container technologies.

Understanding the differences between Docker and LXD
In this chapter, we’re going to explore both Docker and LXD and see examples of containers running
in both. Before we start working on that though, it’s a good idea to understand some of the things that
set each solution apart from the other.

Docker is probably the technology most of my readers have heard of. It seems as though you can’t
visit a single IT conference nowadays without it at least being mentioned. Docker is everywhere, and
it runs on pretty much any platform. There’s lots of documentation available for Docker and various
resources you can utilize to deploy it. Docker utilizes a layered approach to containerization. Every
change you make to the container creates a new layer, and these layers can form the base of other
containers, thus saving disk space. More on that later.

LXD (pronounced Lex-D) finds its roots in LXC, so it’s important to understand that first before we talk
about LXD. LXC (pronounced Lex-C) is short for Linux Containers and is another implementation of
containerization, similar to Docker. This technology, like similar solutions, uses the control groups
(cgroups) feature of the Linux kernel, which isolates processes and is able to segregate them from one
another. This enhances security, as processes should not be able to read data from other processes
unless there’s a good reason to.

LXC takes the concept of segregation even further, by creating an implementation of virtualization
based solely on running applications in an isolated environment that matches the environment of an
operating system. You can run LXC containers on just about every distribution of Linux available today.

LXD is also available for many Linux distributions, but it’s treated as a first-class citizen in Ubuntu.
This is because Canonical (the company behind Ubuntu) had a major hand in its development, and
also offers commercial support for it. Since the software that makes LXD itself work is distributed
via snap packages, that essentially means that any distribution of Linux that is able to install snap
packages should be able to install LXD.

LXD takes LXC and gives it additional features that it otherwise wouldn’t have, such as snapshots, ZFS
support, and migration. LXD doesn’t replace LXC; it actually utilizes it to provide its base technology.
Perhaps the best way to think of LXD is as LXC with an additional management layer on top that adds
additional features.

How does LXD/LXC differ from Docker? The main difference is that while they are both container
solutions and solve the same goal in a very similar way, LXD is more similar to an actual VM while
Docker tries harder to differentiate itself from that. In comparison, Docker containers are transactional
(like I’ve already mentioned) and you generally have an ENTRYPOINT command that is run inside the
container when you launch it. Essentially, LXD has a filesystem that you can directly access from the
host operating system and has a simpler approach to containerization. You can think of LXC as a form
of machine container that closely emulates a VM, and a Docker container is an application container that
provides the foundation needed to run an application. Regardless of these differences, the technologies
can be used in the same way and provide support for identical use cases.

Running Containers362

When should you use Docker and when should you use LXD? I actually recommend you practice
both since they’re not overly difficult to learn. We will go over the basics of these technologies in this
chapter. But to answer the question at hand, there are a few use cases where one technology may make
more sense than the other. Docker is more of a general-purpose tool. You can run Docker containers
on Linux, macOS, and even Windows. It’s, therefore, a good choice if you want to create a container
that runs everywhere. LXD is generally best for Linux environments, though Docker runs great in
Linux too. The operating system you’re running your container solution on is of little importance
nowadays, since most people use a container service to run containers rather than an actual server
that you manage yourself. In the future, if you get heavily into containerization, you may find yourself
forgoing the operating system altogether and just running them in a service such as Amazon’s Elastic
Container Service (ECS), which is one of a handful of cloud services that allow you to run containers
without having to manage the underlying server.

Another benefit of Docker is Docker Hub, which you can use to download containers others have
made or even upload your own for others to use. The benefit here is that if someone has already solved
the goal you’re trying to achieve, you can benefit from their work rather than starting from scratch,
and they can also benefit from your work as well. This saves time and is often better than creating a
solution by hand.

Always make sure to audit third-party resources before you put them to use in your organization. This
includes (but isn’t limited to) containers developed by a third party. You should understand how the
container image was built, how secure the settings are, and whether or not there’s anything built-in
that might impose a security risk. Basically, some administrators will happily accept a container image
as-is, but that practice can be very risky. Never deploy a container image that hasn’t been audited for
security.

Now that we understand not only the core concepts but the differences between the two containerization
standards, let’s take a look at Docker.

Installing Docker
Installing Docker is very fast and easy, so much so that it barely constitutes its own section. In the
last chapter, we had to install several packages in order to get a Kernel-based Virtual Machine (KVM)
virtualization server up and running as well as tweak some configuration files. In comparison, installing
Docker is effortless, as you only need to install the docker.io package:

sudo apt install docker.io

Yes, that’s all there is to it. Installing Docker was definitely much easier than setting up KVM, as we
did in the previous chapter. Ubuntu includes Docker in its default repositories, so it’s only a matter
of installing this one package and its dependencies. You’ll now have a new service installed on your
machine, simply titled docker. In order to be useful, the service needs to be running. You can check
to see whether or not it’s already running with the following command:

systemctl status docker

Chapter 17 363

Check the output of the previous command to see if the docker service is running. You should also
check to see if the service is enabled. If not, you can start the service and also enable it at the same
time with the following command:

systemctl enable --now docker

We also have the docker command available to us now, which allows us to manage our containers.
By default, it does require root privileges, so you’ll need to use sudo to use it. To make this easier, I
recommend that you add your user account to the docker group before going any further. This will
eliminate the need to use sudo every time you run a docker command. The following command will
add your user account to the appropriate group:

sudo usermod -aG docker <yourusername>

After you log out and then log in again, you’ll be able to manage Docker much more easily.

You can verify your group membership by simply running the groups command with no options, which
should now show your user as a member of the docker group.

Well, that’s it. Docker is installed, and your user account is a member of the docker group, so you’re
good to go. Wow, that was easy!

Now that we have Docker installed, let’s start using it. It’s a fun technology to learn, and in the next
section, we’ll explore a few examples.

Managing Docker containers
Now that Docker is installed and running, let’s take it for a test drive. After installing Docker, we have
the docker command available to use now, which has various sub-commands to perform different
functions with containers. First, let’s try out docker search:

docker search ubuntu

With Docker, containers are created from images. There are many pre-existing container images we
can use, or we can build our own. The docker search command allows us to search for a container
image that already exists and has been made available to us. Once we’ve chosen an image, we can
download it locally and create container instances from it.

The ability of administrators to search for (and download) an existing container is just one of many
great features Docker offers us. Although we can definitely build our own container images (and we
will do so, right here in this chapter), sometimes it might make sense to use a pre-existing container
image, rather than create a new one from scratch.

For example, you can install an NGINX container, simply named nginx. This is actually an official
container image, so it should be trustworthy. We can tell that a container image is trustworthy by the
verbiage DOCKER OFFICIAL IMAGE being present if you were to look up the image on the Docker
Hub website at https://hub.docker.com. If we wanted to deploy a container running NGINX, doing
so via the official image would save us a lot of time, especially compared to creating one from scratch.
After all, why reinvent the wheel if you don’t have to?

https://hub.docker.com

Running Containers364

However, even if the container image comes from a trustworthy source, you should still audit it. With
the NGINX example, we can be fairly confident that the image is safe and doesn’t contain any unwanted
objects, such as malware. However, there’s no such thing as 100% trustworthy when it comes to security,
so we should audit them anyway.

But how does this work? The docker search command will search Docker Hub, which is an online
repository that hosts containers for others to download and utilize. You could search for containers
based on other applications, or even other distributions such as Fedora or AlmaLinux, if you wanted to
experiment. The command will return a list of Docker images available that meet your search criteria.

So what do we do with these images? An image in Docker is its closest equivalent to a VM or hardware
image. It’s a snapshot that contains the filesystem of a particular operating system or Linux distribution,
along with some changes the author included to make it perform a specific task. This image can then
be downloaded and customized to suit your purposes. You can choose to upload your customized
image back to Docker Hub if you would like to contribute upstream. Every image you download will
be stored on your machine so that you won’t have to re-download it every time you wish to create a
new container.

To pull down a Docker image for our use, we can use the docker pull command, along with one of
the image names we saw in the output of our search command:

docker pull ubuntu

With the preceding command, we’re pulling down the latest Ubuntu container image available on
Docker Hub. The image will now be stored locally, and we’ll be able to create new containers from it.
The process will look similar to the following screenshot:

Figure 17.1: Downloading an Ubuntu container image

If you’re curious as to which images you have saved locally, you can execute docker images to get a
list of the Docker container images you have stored on your server:

docker images

Chapter 17 365

The output will look similar to this:

Figure 17.2: Listing installed Docker images

Notice the IMAGE ID in the output. If for some reason you want to remove an image, you can do so
with the docker rmi command, and you’ll need to use the ID as an argument to tell the command
what to delete. The syntax would look similar to this if I was removing the image with the ID shown
in the screenshot:

docker rmi d2e4e1f51132

Once you have a container image downloaded to your server, you can create a new container from it by
running the docker run command, followed by the name of your image and an application within the
image to run. An application run from within a Docker container is known as an ENTRYPOINT, which
is just a fancy term to describe an application a particular container is configured to run. You’re not
limited to the ENTRYPOINT though, and not all containers actually have an ENTRYPOINT. You can use
any command in the container that you would normally be able to run in that distribution. In the case
of the Ubuntu container image we downloaded earlier, we can run bash with the following command
so that we can get a prompt and enter any command(s) we wish:

docker run -it ubuntu /bin/bash

Once you run that command, you’re now interacting with a shell prompt from within your container.
From here, you can run commands you would normally run within a real Ubuntu machine, such as
installing new packages, changing configuration files, and more. Go ahead and play around with the
container, and then we’ll continue with a bit more theory on how this is actually working.

There are some potentially confusing aspects of Docker we should get out of the way first before we
continue with additional examples. The thing that’s most likely to confuse newcomers to Docker is
how containers are created and destroyed. When you execute the docker run command against an
image you’ve downloaded, you’re actually creating a container. Therefore, the image you downloaded
with the docker pull command wasn’t an actual container itself, but it becomes a container when you
run an instance of it. When the command that’s being run inside the container finishes, the container
goes away. Therefore, if you were to run /bin/bash in a container and install a bunch of packages,
those packages would be wiped out as soon as you exited the container.

Running Containers366

You can think of a Docker image as a “blueprint” for a container that can be used to create running
containers. Every container you run has a container ID that differentiates it from others. If you want
to remove a persistent container, for example, you would need to reference this ID with the docker
rm command. This is very similar to the docker rmi command that’s used to remove container images.

To see the container ID for yourself, you’ll first need to exit the container if you’re currently running
one. There are two ways of doing so. First, you could press Ctrl + d to disconnect, or even type exit
and press Enter. When you exit the container, you’re removing it (Docker containers only typically
exist while running). When you run the docker ps command (which is the command you’ll use any
time you want a list of containers on your system), you won’t see it listed. Instead, you can add the -a
option to see all containers listed, even those that have been stopped.

You’re probably wondering, then, how to exit a container and not have it go away. To do so, while you’re
attached to a container, press Ctrl + p and then press q (don’t let go of the Ctrl key while you press these
two letters). This will drop you out of the container, and when you run the docker ps command (even
without the -a option), you’ll see that it’s still running.

The docker ps command deserves some attention. The output will give you some very useful
information about the containers on your server, including the CONTAINER ID that was mentioned
earlier. In addition, the output will contain the IMAGE it was created from, the COMMAND being run when
the container was CREATED, and its STATUS, as well as any PORTS you may have forwarded. The output
will also display randomly generated names for each container, which are usually quite comical. As
I was going through the process of creating containers while writing this section, the code names
for my containers were tender_cori, serene_mcnulty, and high_goldwasser. This is just one of the
many quirks of Docker, and some of these can be quite humorous.

The important output of the docker ps -a command is the CONTAINER ID, the COMMAND, and the
STATUS. The ID, which we already discussed, allows you to reference a specific container to enable you
to run commands against it. COMMAND lets you know what command was being run. In our example,
we executed /bin/bash when we started our containers.

If we have any containers that were stopped, we can resume a container with the docker start
command, giving it a container ID as an argument. Your command will end up looking similar to this:

docker start d2e4e1f51132

The output will simply return the ID of the container, and then drop you back to your shell prompt—not
the shell prompt of your container, but that of your server. You might be wondering at this point, how
do I get back to the shell prompt for the container? We can use docker attach for that:

docker attach d2e4e1f51132

The docker attach command is useful because it allows you to attach your shell to a container that
is already running. Most of the time, containers are started automatically instead of starting with
/bin/bash as we have done. If something were to go wrong, we may want to use something like docker
attach to browse through the running container to look for error messages. It’s very useful.

Chapter 17 367

Speaking of useful, another great command is docker info. This command will give you information
about your implementation of Docker, such as letting you know how many containers you have on
your system, which should be the number of times you’ve run the docker run command unless you
cleaned up the previously run containers with docker rm. Feel free to take a look at its output and see
what you can learn from it.

Getting deeper into the subject of containers, it’s important to understand what a Docker container
is and what it isn’t. A container is not a service running in the background, at least not inherently. A
container is a collection of namespaces, such as a namespace for its filesystem or users. As discussed
earlier in this chapter, containers are isolated from the rest of the server by utilizing technology within
the Linux kernel. When you disconnect without a process running within the container, there’s no
reason for it to run, since its namespace is empty. Thus, it stops. If you’d like to run a container in a way
that is similar to a service (it keeps running in the background), you would want to run the container
in detached mode. Basically, this is a way of telling your container to run this process and to not stop
running it until you tell it to. Here’s an example of creating a container and running it in detached mode:

docker run -dit ubuntu /bin/bash

After running the previous command, Docker will print a container ID, and then drop back to your
command prompt. You can then see that the container is running with the docker ps command, so
use docker attach along with the container ID to connect to it and run commands.

Normally, we use the -it options to create a container. This is what we used a few examples ago. The -i
option triggers interactive mode, while the -t option gives us a pseudo-TTY. At the end of the command,
we tell the container to run the Bash shell. The -d option runs the container in the background.

It may seem relatively useless to have another Bash shell running in the background that isn’t actually
performing a task. But these are just simple examples to help you get the hang of Docker. A more
common use case may be to run a specific application. In fact, you can even serve a website from a
Docker container by installing and configuring Apache within the container, including a virtual host.
The question then becomes: how do you access the container’s instance of Apache within a web
browser? The answer is port redirection, which Docker also supports. Let’s give this a try.

First, let’s create a new container in detached mode. Let’s also redirect port 80 within the container
to port 8080 on the host:

docker run -dit -p 8080:80 ubuntu /bin/bash

The command will output a container ID. This ID will be much longer than you’re accustomed to
seeing. This is because when we run docker ps -a, it only shows shortened container IDs. You don’t
need to use the entire container ID when you attach; you can simply use part of it as long as it’s long
enough to be different from other IDs:

docker attach dfb3e

Here, I’ve attached to a container with an ID that begins with dfb3e. This will connect my shell to a
Bash shell within the container.

Running Containers368

Let’s install Apache. We’ve done this before, but there are a few differences that you’ll see. First, if you
simply run the following command to install the apache2 package as we would normally do, it may
fail for one or two reasons:

sudo apt install apache2

The two problems here are first that sudo isn’t included by default in the Ubuntu container, so it won’t
even recognize the sudo part of the command. When you run docker attach, you’re actually attaching
to the container as the root user, so the lack of sudo won’t be an issue anyway. Second, the repository
index in the container may be out of date, if it’s even present at all. This means that apt within the
container won’t even find the apache2 package. To solve this, we’ll first update the repository index:

apt update

Then, install apache2 using the following command:

apt install apache2

You may be asked to set your time zone or geographic location during the installation of packages. If
so, go ahead and enter each prompt accordingly.

Now we have Apache installed in our container. We don’t need to worry about configuring the default
sample web page or making it look nice. We just want to verify that it works. Let’s start the service:

/etc/init.d/apache2 start

After running that command, Apache should be running within the container.

The previous command is definitely not our normal way of starting services. Typically, we’d use a command
like systemctl start apache2, but there’s no actual init system inside a container, so running systemctl
commands will not work as they normally would. Always refer to any documentation that may exist for a
container you’re attempting to run, regarding how to start an application it may contain.

Apache should be running within the container. Now, press Ctrl + p and then press q (don’t let go of
the Ctrl key while you press these two letters) to exit the container, but allow it to keep running in the
background. You should be able to visit the sample Apache web page for the container by navigating
to localhost:8080 in your web browser. You should see the default It works! page of Apache.

Congratulations, you’re officially running an application within a container:

Chapter 17 369

Figure 17.3: The default Apache start page, running from within a container

As your Docker knowledge grows, you’ll want to look deeper into the concept of an ENTRYPOINT. An
ENTRYPOINT is a preferred way of starting applications in a Docker container. In our examples so far,
we’ve used an ENTRYPOINT of /bin/bash. While that’s perfectly valid, an ENTRYPOINT is generally a Bash
script that is configured to run the desired application and is launched by the container.

Our Apache container is running happily in the background, responding to HTTP requests over port
8080 on the host. But what should we do with it at this point? We can create our own image from it so
that we can simplify deploying it later. To be fair, we’ve only installed Apache inside the container, so
it’s not saving us that much work. In a real production environment, you may have a container running
that needed quite a few commands to set it up. With an image, we can have all of that work baked into
the image, so we won’t have to run any setup commands we may have each time we want to create a
container. To create a container image, let’s grab the container ID of a running container by running
the docker ps command. Once we have that, we can now create a new image of the container with
the docker commit command:

docker commit <Container ID> ubuntu/apache-server:1.0

Running Containers370

That command will return us the ID of our new image. To view all the Docker images available on our
machine, we can run the docker images command to have Docker return a list. You should see the
original Ubuntu image we downloaded, along with the one we just created. We’ll first see a column
for the repository the image came from; in our case, it is Ubuntu. Next, we see the tag. Our original
Ubuntu image (the one we used docker pull to download) has a tag of latest. We didn’t specify that
when we first downloaded it; it just defaulted to latest. In addition, we see an image ID for both, as
well as the size.

To create a new container from our new image, we just need to use docker run, but specify the tag
and name of our new image. Note that we may already have a container listening on port 8080, so this
command may fail if that container hasn’t been stopped:

docker run -dit -p 8080:80 ubuntu/apache-server:1.0 /bin/bash

Speaking of stopping a container, I should probably show you how to do that as well. As you can
probably guess, the command is docker stop followed by a container ID:

docker stop <Container ID>

This will send the SIGTERM signal to the container, followed by SIGKILL if it doesn’t stop on its own
after a delay.

Admittedly, the Apache container example was fairly simplistic, but it does the job as far as showing
you a working example of a container that is actually somewhat useful. Before continuing on, think
for a moment of all the use cases you can use Docker for in your organization. It may seem like a very
simple concept (and it is), but it allows you to do some very powerful things. Perhaps you’ll want to try
to containerize your organization’s intranet page or some sort of application. The concept of Docker
sure is simple, but it can go a long way with the right imagination.

Before I close out this section, I’ll give you a personal example of how I implemented a container at
a previous job. At this organization, I worked with some Embedded Linux software engineers who
each had their own personal favorite Linux distribution. Some preferred Ubuntu, others preferred
Debian, and a few even ran Gentoo. This in and of itself wasn’t necessarily an issue—sometimes it’s
fun to try out other distributions. But for developers, a platform change can introduce inconsistency,
and that’s not good for a software project. The included build tools are different in each distribution
of Linux because they all ship different versions of all the development packages and libraries. The
application this particular organization developed was only known to compile properly in Debian,
and newer versions of the compiler posed a problem for the application. My solution was to provide
each developer with a Docker container based on Debian, with all the build tools that they needed to
perform their job baked in. At this point, it no longer mattered which distribution they ran on their
workstations. The container was the same no matter what they were running. Regardless of what their
underlying operating system was, they all had the same tools. This gave each developer the freedom to
run their preferred distribution of Linux (or even macOS), and it didn’t impact their ability to do their
job. I’m sure there are some clever use cases you can come up with for implementing containerization.

Now that we understand the basics of Docker, let’s take a look at automating the process of building
containers.

Chapter 17 371

Automating Docker image creation with Dockerfiles
I’ve mentioned previously in this book that anything worth having a server do more than once should be
automated, and building a Docker container is no exception. A Dockerfile is a neat way of automating
the building of Docker images by creating a text file with a set of instructions for their creation. Docker
is able to take this file, execute the commands it contains, and build a container. It’s magic.

The easiest way to set up a Dockerfile is to create a directory, preferably with a descriptive name
for the image you’d like to create (you can name it whatever you wish, though), and inside it create a
text file named Dockerfile. For a quick example, copy this text into your Dockerfile and I’ll explain
how it works:

FROM ubuntu
MAINTAINER Jay <jay@somewhere.net>
Avoid confirmation messages
ARG DEBIAN_FRONTEND=noninteractive
Update the container's packages
RUN apt update; apt dist-upgrade -y
Install apache2 and vim
RUN apt install -y apache2 vim-nox
Start Apache
ENTRYPOINT apache2ctl -D FOREGROUND

Let’s go through this Dockerfile line by line to get a better understanding of what it’s doing:

FROM ubuntu

We need an image to base our new image on, so we’re using Ubuntu as a starting point.

This will cause Docker to download the ubuntu:latest image from Docker Hub, if we haven’t already
downloaded it locally. If we do have it locally, it will just use the locally cached version.

MAINTAINER Jay <myemail@somewhere.net>

Here, we’re setting the maintainer of the image. Basically, we’re declaring its author. This is optional,
so you don’t need to include that if you don’t want to.

Avoid confirmation messages

Lines beginning with a hash symbol (#) are ignored, so we are able to create comments within the
Dockerfile. This is recommended to give others a good idea of what your Dockerfile is doing.

ARG DEBIAN_FRONTEND=noninteractive

Here, we’re setting an environment variable that, in this case, sets the environment to noninteractive.
The reason we do this is that the process of installing a package while building a Docker container
should be automatic; if a prompt comes up while a package is being installed and asks you a question,
your input will not pass through and the process will hang.

Running Containers372

With this environment variable, we’re clarifying that we want to be in noninteractive mode so that
the default answers to any questions that come up will be used and we won’t be prompted.

RUN apt update; apt dist-upgrade -y

With the RUN command, we’re telling Docker to run a specific command while the image is being
created. In this case, we’re updating the image’s repository index and performing a full package
update to ensure the resulting image is as fresh as can be. The -y option is provided to suppress any
requests for confirmation while installing the packages. Despite the fact that we set noninteractive
mode earlier, apt will still try to confirm changes interactively, and the -y option suppresses that.

RUN apt install -y apache2 vim-nox

Next, we’re installing both apache2 and vim-nox. The vim-nox package isn’t required, but I personally
like to make sure all of my servers and containers have it installed. I mainly included it here to show
you that you can install multiple packages in one line.

ENTRYPOINT apache2ctl -D FOREGROUND

I mentioned the concept of an ENTRYPOINT earlier, which again is where we clarify which application
should run when the container starts. The apache2ctl command is a wrapper command for Apache
that allows administrators to control the finer points of running the Apache daemon. A full walk-
through of this command is beyond the scope of this chapter, but we’re using it here because we want
Apache to automatically start with the container, and apache2ctl is one method of doing that without
relying on systemctl (which the container doesn’t have).

Great, now we have a Dockerfile. So what do we do with it? Well, turn it into an image of course! To
do so, we can use the docker build command, which can be executed from within the directory that
contains the Dockerfile. Here’s an example of using the docker build command to create an image
tagged packt/apache-server:1.0:

docker build -t learnlinuxtv/apache-server:1.0 .

Once you run that command, you’ll see Docker create the image for you, running each of the commands
you asked it to. The image will be set up just the way you like. Basically, we just automated the entire
creation of the Apache container we used as an example in this section. If anything goes wrong, Docker
will print an error to your shell. You can then fix the error in your Dockerfile and run it again, and it
will continue where it left off.

Once complete, we can create a container from our new image:

docker run -dit -p 8080:80 learnlinuxtv/apache-server:1.0

Almost immediately after running the container, the sample Apache site will be available on
localhost:8080 on the host. With a Dockerfile, you’ll be able to automate the creation of your Docker
images. That was easy, wasn’t it? There’s much more you can do with Dockerfiles; feel free to peruse
Docker’s official documentation to learn more. Exploration is key, so give it a try and experiment with it.

Chapter 17 373

Managing LXD containers
With Docker out of the way, let’s take a look at how to run containers with LXD. Let’s dive right in and
install the required package:

sudo snap install lxd

As you can see, installing LXD is just as easy as installing Docker. In fact, managing containers with
LXD is very straightforward as well, as you’ll soon see. Installing LXD gives us the lxc command, which
is the command we’ll use to manage LXD containers. Before we get going though, we should add our
user account to the lxd group:

sudo usermod -aG lxd <yourusername>

Make sure you log out and log in for the changes to take effect. Just like with the docker group with
Docker, the lxd group will allow our user account to manage LXD containers.

Next, we need to initialize our new LXD installation. We’ll do that with the lxd init command:

lxd init

The process will look similar to the following screenshot:

Figure 17.4: Setting up LXD with the lxd init command

The lxd init command will ask us a series of questions regarding how we’d like to set up LXD. The
defaults are mostly fine for everything, and for the size of the pool, I just used the default of 30 GB, but
you can use whatever size you want to. I set ipv6 to none during the setup since my network doesn’t
utilize that, and I also decided to make lxd available over the network.

Even though we chose the defaults for most of the questions, they’ll give you a general consensus
of some of the different options that LXD makes available for us. For example, we can see that LXD
supports the concept of a storage pool, which is one of its neater features.

Running Containers374

Here, we’re creating a default storage pool with a filesystem format of zfs, which is a filesystem that
is used on actual hard disks. During the setup process, LXD sets up the storage pool, network bridge,
IP address scheme, and basically everything we need to get started.

Now that LXD is installed and set up, we can configure our first container:

lxc launch ubuntu:22.04 mycontainer

With that simple command, LXD will now download the root filesystem for this container and set it
up for us. Once done, we’ll have an LXD container based on Ubuntu 22.04 running and available for
use. This is different than Docker, which only sets up an image by default, making us run it manually.
During this process, we gave the container the name of mycontainer. The process should be fairly
easy to follow so far.

You might be wondering why we used a lxc command to create a container since we’re learning
about LXD here. As I mentioned earlier, LXD is an improvement over LXC, and as such, it uses lxc
commands for management. Commands that are specific to the LXD layer will be lxd, and anything
specific to container management will be done with lxc.

When it comes to managing containers, there are several types of operations you will want to perform,
such as listing containers, starting a container, stopping a container, deleting a container, and so on.
The lxc command suite is very easy and straightforward. Here is a table listing some of the most
common commands you can use, and I’m sure you’ll agree that the command syntax is very logical.
For each example, you substitute <container> with the name of the container you created:

Goal Command

List the containers lxc list

Start a container lxc start <container>

Stop a container lxc stop <container>

Remove a container lxc delete <container>

List the downloaded images lxc image list

Remove an image lxc image delete <image_name>

With all the basics out of the way, let’s jump into our container and play around with it. To open a shell
to the container we just created, we would run the following:

lxc exec mycontainer bash

In the preceding command, exec tells the container we want to execute a command, mycontainer is
the name of the container that we want to execute something against, and the specific command we
want to execute is bash. After you execute that command, it immediately runs bash from the container
as root. From here, you can configure the container as you need to by installing packages, setting up
services, or whatever else you may need to do in order to make the container conform to the purpose
you have for it. In fact, the process of customizing the container for redeployment is actually easier
than it is with Docker.

Chapter 17 375

Unlike with Docker, changes are not wiped when you exit a container, and you don’t have to exit it in a
particular way to avoid losing your changes. We also don’t have layers to deal with in LXD, which you
may or may not be happy about (layers in Docker containers can make deployments faster, but when
previously run containers aren’t cleaned up, the number of layers can look messy).

The Ubuntu image we used to create our container includes a default user account, ubuntu. This is
similar to some VPS providers, which also include an ubuntu user account by default (Amazon EC2
is an example of this). If you prefer to log in as this user rather than root, you can do that with this
command:

lxc exec mycontainer -- su --login ubuntu

The ubuntu user has access to sudo, so you’ll be able to run privileged tasks with no issue.

To exit the container, you can press Ctrl + d on your keyboard, or simply type exit. Feel free to log
in to the container and make some changes and experiment. Once you have the container set up the
way you like it, you may want the container to automatically start up when you boot your server. This
is actually very easy to do:

lxc config set mycontainer boot.autostart 1

With the preceding command, we’re setting boot.autostart to 1, which turns on that particular
feature. Similar to a Boolean variable for those that are familiar with programming, 1 means “on” and
0 means “off.” After setting this config value, your newly created container will now start up with the
server anytime it’s booted.

Now, let’s have a bit of fun. Feel free to install the apache2 package in your container. Similar to Docker,
I’ve found that you will probably want to run apt update to update your package listings first, as I’ve
seen failures installing packages on a fresh container solely because the indexes were stale. So just
run this to be safe:

sudo apt update && sudo apt install apache2

Now, you should have Apache installed and running in the container. Next, we need to grab the IP
address of the container. Yes, you read that right, LXD has its own IP address space for its containers,
which is very neat. Simply run ip addr show (the same command you’d run in a normal server), and
it will display the IP address information. On the same machine that’s running the container, you can
visit this IP address to see the default Apache web page. If you’re running the container on a server
with no graphical user interface, you can use the curl command to verify that it’s working:

curl <container_ip_address>

Although we have Apache running in our container, we can see that it’s not very useful yet. The web
page is only available from the machine that’s hosting the container. This doesn’t help us much if we
want users in our local network or even from the outside internet to be able to reach our site. We could
set up firewall rules to route traffic to it, but there’s an easier way—creating a profile for external access.

Running Containers376

I mentioned earlier that even though LXD is a containerization technology, it shares some of its feature
set with VMs, basically giving you VM-like features in a non-VM environment. With LXD, we can create
a profile to allow it to get an IP address from your DHCP server and route traffic directly through your
LAN, just as with a physical device that you connect to your network.

Before continuing, you’ll need a bridge connection set up on your server. This is done in software
via Netplan and was discussed as part of the previous chapter. If you list your network interfaces (ip
addr show), you should see a br0 connection. If you don’t have this configured, refer back to Chapter
16, Virtualization, and refer to the Bridging the VM network section there. Once you’ve created this
connection, you can continue on.

Some network cards do not support bridging, especially with some Wi-Fi cards. If you’re unable to create
a bridge on your hardware, the following section may not work for you. Consult the documentation
for your hardware to ensure your network card supports bridging.

To create the profile we’ll need in order to enable external access to our containers, we’ll use the
following command:

lxc profile create external

We should see output similar to the following:

Profile external created

Next, we’ll need to edit the profile we just created. The following command will open the profile in a
text editor so that you can edit it:

lxc profile edit external

Inside the profile, we’ll replace its text with this:

description: External access profile
devices:
 eth0:
 name: eth0
 nictype: bridged
 parent: br0
 type: nic

From this point forward, we can launch new containers with this profile with the following command:

lxc launch ubuntu:22.04 mynewcontainer -p default -p external

Notice how we’re applying two profiles, default and then external. We do this so that the values
in default can be loaded first, followed by the second profile so that it overrides any conflicting
parameters that may be present.

Chapter 17 377

We already have a container, though, so you may be curious how we can edit the existing one to take
advantage of our new profile. That’s simple:

lxc profile add mycontainer external

From this point forward, assuming the host bridge on your server has been configured properly, the
container should be accessible via your local LAN. You should be able to host a resource, such as a
website, and have others be able to access it. This resource could be a local intranet site or even an
internet-facing website.

As far as getting started with LXD is concerned, that’s essentially it. LXD is very simple to use, and its
command structure is very logical and easy to understand. With just a few simple commands, we can
create a container, and even make it externally accessible. Canonical has many examples and tutorials
available online to help you push your knowledge even further, but with what you’ve learned so far,
you should have enough practical knowledge to roll out this solution in your organization.

Summary
Containers are a wonderful method of hosting applications. You can spin up more containers on your
hardware than you’d be able to with VMs, which will definitely save resources. While not all applications
can be run inside containers, it’s a very useful tool to have available. In this chapter, we looked at both
Docker and LXD. While Docker is better for cross-platform applications, LXD is simpler to use but
is very flexible. We started out by discussing the differences between these two solutions, then we
experimented with both creating containers and looking at how to manage them.

In the next chapter, we will expand our knowledge of containers even further and take a look at
orchestration, which allows us to manage multiple containers more efficiently. This will be the chapter
where all of the concepts relating to containers come together.

Relevant videos
•	 Docker Essentials tutorial series (LearnLinuxTV): https://linux.video/docker-essentials
•	 Getting started with LXD (LearnLinuxTV): https://linux.video/lxd-guide

Further reading
•	 Docker documentation page: https://learnlinux.link/d-docs
•	 LXD introduction: https://learnlinux.link/lxd-intro
•	 LXD documentation: https://learnlinux.link/c-lxd

https://linux.video/docker-essentials
https://linux.video/lxd-guide
https://learnlinux.link/d-docs
https://learnlinux.link/lxd-intro
https://learnlinux.link/c-lxd

Running Containers378

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

18
Container Orchestration

In the previous chapter, we started learning concepts around containerization. We’ve learned what
containers are and how they differ from Virtual Machines (VMs), as well as how to run two different
types of containers (Docker and LXD). As you are now aware, containers are typically lightweight (which
means you run a larger number of them than VMs on the same hardware) and are easy to manage
with a command syntax that’s rather logical, such as docker run myapp to launch a container named
myapp. Depending on the size of your organization, you may only need to run one or two containers
to suit your needs, or perhaps you plan on scaling up to hundreds of them. While it’s rather simple to
maintain a small number of containers, the footprint can quickly expand and become much harder
to keep track of.

In this chapter, we’ll start looking into the concept of Container Orchestration, which can help us
to better maintain the containers that we run. Without such orchestration, the onus is on you, the
administrator, to ensure your containers are running properly. While someone still needs to be
responsible for mission-critical containers, orchestration provides us with tools we can use to manage
them much more efficiently. In addition, orchestration allows us to create an entire cluster that’s easily
scalable, so we’re better equipped to handle the demand of our users or clients. As we navigate this
topic, we will work on:

•	 Container orchestration
•	 Preparing a lab environment for Kubernetes testing
•	 Utilizing MicroK8s
•	 Setting up a Kubernetes cluster
•	 Deploying containers via Kubernetes

Excited? I know I am—containerization can be a lot of fun to learn and work with. We’ll even create our
very own cluster in this chapter! But before we can do that, let’s make sure we have an understanding
of what container orchestration is.

Container Orchestration380

Container orchestration
In the last chapter, we covered the basics of running containers on your server. Of special note is the
coverage of Docker, which will play a very important role in this chapter. We saw how to pull a Docker
image as well as how to use such an image to create a container. There are many more advanced
concepts we can learn when it comes to Docker, but understanding the essentials is good enough for
the scope of this chapter. And now that we know how to run containers, looking further into how to
more efficiently manage them is a logical next step.

Traditionally, as an administrator, you’ll ensure the critical apps and services for your organization
are always healthy and available. If a critical resource stops working for any reason, it falls on you to
return it to a healthy state. Regardless of whether we’re utilizing applications on a physical server, or
in a VM or container, this need doesn’t change—production apps need to be available at all times with
minimal or no downtime. Specific to containers, what orchestration does for us is help us maintain
them much more efficiently. Orchestration allows us to not only manage our containers in one place,
but it also provides us with additional tooling we can use to more intelligently handle load and recover
from faults.

Consider this example: let’s assume you work at an organization that has an important website that
needs to be available online at all times, and it’s currently set up inside a VM. As the administrator, you
test the application by running it inside a Docker container and discover that it not only functions the
same as in the VM, it also requires less of the server’s memory to run it in a container, and it’s even
more responsive than before. Everyone at your company is impressed, and the project of converting
your company’s site to run inside a container is a complete success.

Now, let’s assume your organization is getting ready to release a brand new version of your company’s
product. It’s expected that the demand for your website will increase ten times for at least the first few
weeks after the debut. To address this, you can launch however many additional containers you feel
will handle the expected load, and then set up a load balancer to spread traffic evenly between them.
When the excitement over the new release winds down, you can remove the newly added containers
to return to your original population. We haven’t gone over load balancers yet, but these are useful
for spreading traffic between multiple nodes. This feature is built into Kubernetes, so you won’t need
to install anything extra to take advantage of this.

If the launch of your organization’s newly updated product is expected to go live at 1:00am, you’d have
to make sure you’re awake then and execute the necessary commands to launch the extra containers
and deploy the load balancer. You would then watch the containers for a while and ensure they’re stable.
Perhaps you’ve already tested this in a testing environment, so you have reasonable confidence that
the maintenance will go smoothly. After you successfully launch the containers, you set a reminder
for yourself in your calendar to log back in after two weeks to undo the changes.

While that approach can technically work and result in a successful rollout, it’s not very efficient. Sure,
you can log in at 1:00am to launch the extra containers and deploy the load balancer, but is that an
effective use of your time? What if you’re very sleepy at that time and make a mistake that results in
a failure during an important launch? And when the launch window is over and the load returns to
normal, you may or may not see the alert that you’ve intended to use to remind yourself and lower
the container count.

Chapter 18 381

In that situation, you could end up with an expensive bill since your server would be using extra energy
to run containers that were no longer needed. Even worse, manually managing your containers means
that it can’t handle a situation where the load increases unexpectedly. Despite our best intentions, any
process that is run manually may or may not work out well; we’re only human after all.

With container orchestration, we essentially delegate the process of running containers to an
application that will automatically create additional containers as demand increases and remove
unneeded containers when demand winds down. Orchestration also simplifies the process of setting
up applications, by giving us tools we can use to ensure a particular number of containers are running
at a minimum and we can set a maximum for when load and demand spikes. This empowers us to
have infrastructure that grows and shrinks automatically to match the needs of our users. In addition,
container orchestration allows us to automatically heal from failures. If a container runs into a problem
and fails for some reason, it will be deleted and recreated from the image.

As you can see, orchestration gives us additional value, it can actually save you time and effort. To be
fair, some of the features mentioned are part of containerization itself and not necessarily specific to
orchestration, but the latter does give us the ability to manage these tools much more efficiently. Is
container orchestration for everyone? No technology meets 100% of all use-cases, but it’s certainly
something to consider. If you only run a single container and have no plans to run another, then a
technology such as orchestration is overkill—it would take you more time to manage the cluster than
it would to manage the container itself. Use your best judgment.

If you do decide to implement containerization, Kubernetes (often abbreviated K8s) is a very popular
solution for container orchestration and is what we’ll be exploring in this chapter. What Kubernetes
allows us to do is create deployments for our applications, providing us with fine-tuned control we can
leverage to determine the actual behavior of our applications. It can automatically re-spawn a container
if it stops working for any reason, ensure the number of containers running meets the demand, and
spread our workloads across many worker nodes so that no one server becomes overwhelmed with
running too many containers. Kubernetes is very popular and is not specific to Ubuntu Server. However,
utilizing a technology such as Kubernetes in Ubuntu is one of many ways that we can use to extend
the platform.

What do you need in order to set up a Kubernetes cluster? That’s likely a logical question to have at
this point. In the next section, we’ll cover some of the considerations to make before deciding how
to set it up.

Preparing a lab environment for Kubernetes testing
In an organization, planning a roll-out of an entire Kubernetes cluster can be fairly involved—you
may have to purchase hardware and also analyze your existing environment and understand how
containerization will fit in. It’s possible that some applications you want to run aren’t a good fit for
containers; some don’t support running in a container at all. Assuming you’ve already checked the
documentation for the applications you are wanting to run in containers and came to the conclusion
that such a technology is supported, the next step is procuring the hardware (if you don’t already have
a place to run it) and then setting up the cluster.

Container Orchestration382

Specific to us in this book, we don’t need to contact a server vendor and submit a purchase order to
simply test out the technology. If you are actually involved with the rollout of container orchestration
at your organization, then it’s a fun project to work on. But for the purposes of this book, let’s discuss
some of the details around what’s needed to set up a personal lab in order to set up Kubernetes and
start learning the platform.

The best rule of thumb when setting up a lab for testing software is to try to use what you have
available. To create a Kubernetes cluster, we’ll need one Ubuntu machine to act as the controller, and
one or more additional servers to be used as worker nodes. As you’ll learn later in the book, the goal
of Kubernetes is to schedule containers to run in Pods on worker nodes. Pods in Kubernetes are a
collection of one or more containers, and every container is run in a pod. With more than one worker
node, you can benefit from being able to run more pods (and as an extension, run more containers)
and having load spread between multiple workers to have the most control over how your applications
are served to the end-user.

But on what type of device should you run Kubernetes on in order to test it out and learn it? For this, we
have the same possibilities as we discussed when installing Ubuntu Server back in Chapter 1, Deploying
Ubuntu Server—we can use VMs, physical servers, spare desktops or laptops, as well as Raspberry Pi’s
(or any combination of those). Again, use whatever you have available. For a rollout in an organization,
you may end up using a virtualization server for the controller and worker nodes, or perhaps physical
servers. One of my favorite platforms for Kubernetes is the Raspberry Pi, believe it or not. I’ve been
running a Kubernetes cluster in production for several years that consists of only Raspberry Pi 4 units
with complete success. If nothing else, purchasing a few Pi’s is a relatively low barrier to entry. You
can even utilize a cloud provider if you’d like, though doing so goes beyond the scope of this chapter
as cloud providers generally have their own tools in place to manage clusters.

In general, it’s recommended to have a controller node and a handful of workers. A single worker will
suffice, but in this chapter, I’ll show the process of setting up two workers to better understand how
the platform scales. On your end, you can use a single controller and worker, or set up however many
workers you’d like. One of the best things about Kubernetes is that you aren’t stuck with the number of
workers you set up initially, you can add more nodes to your cluster as time goes on. An organization
may start with just a few workers but add additional ones as the need arises.

As far as resources go, requirements for Kubernetes are relatively modest. The node that’s designated
as the controller should have a minimum of two CPUs or one CPU with at least two cores. Obviously,
it’s better if you have more than that, such as a quad-core CPU for the controller, but two cores are the
minimum. The worker nodes can have a single CPU core each, but the more cores they have, the more
Pods they’ll be able to run. When it comes to RAM, I recommend a minimum of 2 GB of memory on
each, but again, if you have more than that on each node then that’s even better.

It’s important that the IP addresses for the nodes in your cluster do not change. If an IP of a cluster
node changes, it can cause the cluster nodes to be unable to find each other. In Chapter 10, Connecting
to Networks, we learned how to set up a static IP address, which is a good solution for preventing IP
addresses from changing. As an alternative, you can set up a static lease in your DHCP server if you
wish. It doesn’t matter which solution you use, so long as you prevent the IP addresses of cluster nodes
from changing.

Chapter 18 383

For some readers, a more accessible method of setting up comes in the form of MicroK8s, which allows
you to even set up Kubernetes on a single machine. If your only goal is to set up a simple test installation,
it’s one of the best and easiest methods of getting started. MicroK8s is not recommended for running
a production cluster in an organization, but it’s definitely a great way to learn. I do recommend that
you work through the standard Kubernetes procedure with multiple nodes if you can, but in the next
section we’ll walk through setting up MicroK8s for those of you that would like to utilize that method.

Utilizing MicroK8s
If you don’t have more than one machine or enough memory on your laptop or desktop to run multiple
nodes inside virtualization software such as VirtualBox, MicroK8s is a simple way to set up a Kubernetes
instance for testing the platform, as well as going through the examples in this chapter. MicroK8s is
actually provided by Canonical, the makers of Ubuntu. That just goes to show you how important
Kubernetes is to the Ubuntu distribution, its own creator is going the extra mile to contribute to the
platform. MicroK8s is available for Linux, macOS, as well as Windows. So regardless of which operating
system you’re running on your laptop or desktop, you should be able to install and use it. If nothing
else, it gives you a great test installation of Kubernetes that will come in handy as you learn.

To set it up, follow along with one of the subsections below that matches the operating system installed
on your computer.

Installing MicroK8s on Linux
When it comes to Linux, MicroK8s is distributed as a snap package. We covered snap packages back
in Chapter 3, Managing Software Packages, and it’s a great solution for cross-distribution package
management. If you run a recent version of Ubuntu on your computer, then you should already have
support for snap packages and you can proceed to install MicroK8s. If you’re running a distribution
of Linux on your computer other than Ubuntu, then you may not have access to the snap command
by default. If in doubt, you can use the which to see if the command is available:

which snap

If you do have the ability to install snap packages, then your output should be similar to the following:

Figure 18.1: Checking if the snap command is available

If you see no output when you run which snap, then that means your distribution doesn’t have support
for this package type installed. Canonical makes the snap command available to distributions outside
of Ubuntu, so if you’re using a distribution other than Ubuntu, it’s usually just a matter of installing
the required package.

Container Orchestration384

Canonical has additional information available on the following site, which shows the process of
enabling snap for several distributions: https://snapcraft.io/docs/installing-snapd.

For example, the documentation on that site gives the following command to install the required
package for Fedora:

sudo dnf install snapd

Essentially, as long as you follow along with the instructions for setting up snap that are specific to the
distribution of Linux you’re running, the process should be simple enough. If for some reason your
distribution isn’t supported, you can simply use the same Ubuntu installation as you’ve been using
during this book, which will have snap support built in.

Once you either confirm you already have support for snap on your computer, or you successfully
enable the feature, you can install MicroK8s with the following command:

sudo snap install microk8s --classic

If successful, you should see a confirmation in your terminal that the process was successful:

Figure 18.2: Setting up MicroK8s on a Linux installation

Now that we have MicroK8s installed on your Linux computer, we can proceed through the chapter.
Or, you can check out the next section to see the installation process for macOS.

Installing MicroK8s on macOS
On macOS, the installation process for MicroK8s is similar. The process for Mac will utilize Homebrew,
which is an addon for macOS. Homebrew isn’t specific to Kubernetes or MicroK8s; it gives you the ability
to install additional packages on your Mac that aren’t normally available, with MicroK8s being one of
many. Homebrew is essentially a command-line utility with syntax similar to Ubuntu’s apt command.

To install Homebrew, visit https://brew.sh in your browser, and the command required to set it up
will be right there on the site. I could insert the command to install Homebrew right here on this page,
but the process may change someday, so it’s better to get the command right from the official website
for the utility. At the time of writing, the page looks like this:

https://snapcraft.io/docs/installing-snapd
https://brew.sh

Chapter 18 385

Figure 18.3: The Homebrew website

In the screenshot, you’ll notice the command with white text on a black highlight. It’s cut off a bit, due
to the command being wider than this page. You should see the entire command on the site, so you
can copy it from there and paste it into your Mac’s terminal.

It’s becoming increasingly popular for application developers to provide a command on their website
to install their application that you paste directly into your terminal. This is very convenient and
allows you to set up an app quickly. But you should always research and inspect such commands
before pasting them into your terminal (regardless of your operating system). It’s possible that an
outside actor could hijack the command on a website to trick you into running something nefarious.
You can use the wget command to download the script their command will end up running, so you
can check it to ensure it’s not doing something evil. Since this method of deploying software is getting
more and more common, I recommend getting into the habit of checking commands before running
them (especially if they use sudo).

Container Orchestration386

Once you have Homebrew installed on your Mac, you can proceed to install MicroK8s with Homebrew
with the following command:

brew install ubuntu/microk8s/microk8s

Once that command finishes, you should have MicroK8s installed on your Mac. In the next sub-section,
we’ll see the same process in Windows.

Installing MicroK8s on Windows
If you’d like to try out MicroK8s on a laptop or desktop computer running Windows 10, there’s a specific
installer available that will allow you to get it up and running. On the MicroK8s website, at https://
microk8s.io, you should see a large green button labeled Download MicroK8s for Windows, and if
you click on it, you’ll be able to download the installer:

Figure 18.4: The MicroK8s website, with a button to download the installer for Windows

https://microk8s.io
https://microk8s.io

Chapter 18 387

Once the download finishes, you can then launch the installer, which will have several different
sections, all of which you can accept the defaults for. Click Next and then the Install button to begin
the actual installation:

Figure 18.5: The MicroK8s installer for Windows

Container Orchestration388

After the installation begins, another installation will also launch in parallel that will ask you to select
a hypervisor:

Figure 18.6: The MicroK8s installer for Windows, selecting a hypervisor

For this, you can leave the default selection on Microsoft Hyper-V, and click Next. You can keep the
remaining options at their defaults and click Next through any remaining prompt that comes up.
Depending on the setup of your computer, it may require you to reboot in order to finalize the required
components before the installation can be completely finished. If you do see a prompt to reboot, do
so, and then launch the installer again.

Chapter 18 389

You’ll see the following window appear, asking you to set up the parameters for MicroK8s, specifically
how many virtual CPUs to utilize, how much RAM to provide, disk space, and so on:

Figure 18.7: The MicroK8s installer for Windows, allocating resources

You can simply choose the defaults for this screen as well and click Next. Once the process is complete,
you can click the Finish button to exit the installer.

Container Orchestration390

Interacting with MicroK8s
At this point, if you’ve decided to utilize MicroK8s, you should have it installed on your computer. How
you actually interact with it depends on your operating system. In each case, the microk8s command
(which we’ll cover shortly) is used to control MicroK8s. Which app you use in order to enter microk8s
commands differs from one platform to another.

On Windows, you can use the Command Prompt app, which is built into the operating system. The
microk8s command is recognized and available for use after you install MicroK8s. When you enter
the microk8s command by itself, it should display basic usage information:

Figure 18.8: Executing the microk8s command with no options in a Windows Command Prompt

With macOS, you can use the built-in terminal app that’s provided with the operating system. You may
have another step to complete though before you can actually use MicroK8s. If you enter the microk8s
command, and you receive an error informing you that support for multipass needs to be set-
up, then you can run the following command to fix it:

microk8s install

If you’re curious, Multipass is a technology that’s also created by Canonical that allows you to quickly
set up an Ubuntu instance for testing. It’s not specific to MicroK8s or even Kubernetes, but in our case
it’s used in the background to facilitate MicroK8s. Multipass is not covered in this book, but it’s worth
taking a look at if you think you’ll benefit from the ability to quickly set up Ubuntu instances to test
applications and configurations on. It’s available for all of the leading operating systems.

When it comes to Linux, if you’ve already gone through the process of setting up MicroK8s, you
should be ready to use it immediately. Open up your distribution’s terminal app and try the microk8s
command to see if it’s recognized. If it is, you’re ready to move on.

To check the status of MicroK8s, the following command can be used to give you an overview of the
various components. Before you run it, note the inclusion of sudo at the beginning. By default, this is
required if your underlying operating system is Linux.

Chapter 18 391

If you’re running Windows 11 or macOS, you shouldn’t need sudo. This difference has to do with how
the underlying operating system handles permissions, which is different from operating system
to operating system. So, if you’re not using Linux on your PC, feel free to omit sudo from microk8s
commands:

sudo microk8s kubectl get all --all-namespaces

Don’t worry about the details regarding the individual components of Kubernetes at the moment,
we’ll cover what you need to know as we go through the rest of the chapter. For now, so long as you
don’t see errors when you run the previous command and check the status, you should be in good
shape to continue.

By default, our MicroK8s installation comes with only the addons that are required for it to run. There
are other addons we can enable, such as storage, which gives us the ability to expose a path on the host
(the underlying operating system) to Kubernetes; gpu, which allows us to utilize NVIDIA GPUs within
the containers; and others. We don’t need to worry about these for now, but we should at least enable
the dns addon, which sets up DNS within our cluster. It’s not necessarily required, but not having it
can create issues down the road when it comes to name resolution, so we may as well enable it now:

sudo microk8s enable dns

You should see output similar to the following:

Figure 18.9: Enabling the DNS addon in MicroK8s on a Linux installation

In my tests, I find that the command to enable the addon seems to stop responding for a while, with
no output. Don’t close the window; it should catch up and then display information about the process
of installing the addon eventually. If this happens, just wait it out a bit.

With the previous command, we’ve enabled the dns addon. As I’ve mentioned, there are other addons
available, but that’s enough for now. At this point, just keep in mind that you can extend MicroK8s with
addons, so it may be worth exploring in more detail later on if you wish. A list of addons is included
in a link at the end of this chapter.

Container Orchestration392

As mentioned earlier, if you’re using Linux to run MicroK8s, then you would’ve used sudo with the
microk8s command we used earlier. If you’d like to remove the requirement of using sudo on Linux, you
can do so by adding your user to the microk8s group. That can be done with the following command:

sudo usermod -a -G microk8s <yourusername>

After you log out and then log in again, you should be able to run microk8s commands without sudo.

As we’ll discover as we proceed through the rest of the chapter, the kubectl command is generally used
to interact with a Kubernetes cluster and manage it. kubectl, short for Kube Control, is the standard
utility you use to perform many tasks against your cluster. We’ll explore this more later on. But specific
to MicroK8s, it’s important to understand that it uses its own version of kubectl that’s specific to it.
So with MicroK8s, you would run microk8s kubectl instead of simply kubectl to interact with the
cluster. Having a separate implementation of kubectl with MicroK8s allows you to target an actual
cluster (the kubectl command by itself) or specifically your installation of MicroK8s (prefix kubectl
commands with microk8s), so one won’t conflict with the other. As we work through the chapter, I’ll
call out kubectl by itself when we get to the actual examples, so it will be up to you to remember to
use microk8s in front of such commands as needed.

Now that we have our very own installation of MicroK8s on our laptop or desktop, we can proceed
through the examples in this book. You can skip ahead to the Deploying containers via Kubernetes section
later in this chapter to begin working with Kubernetes. In the next section though, we’ll take a look
at setting up a Kubernetes cluster manually without MicroK8s, which is closer to the actual process
you’d use in an actual production implementation.

Setting up a Kubernetes cluster
In the previous section, we set up MicroK8s, which provides us with a Kubernetes cluster on a single
machine, which is great for testing purposes. That might even be all you need in order to learn
Kubernetes and see how it works. If you can, I still recommend setting up a cluster manually, which
will give you even more insight into how the individual components work together. That’s exactly what
we’re going to do in this section.

Before we do get started, it’s important to synchronize our mindset a bit. Of all of the activities we’ve
worked through so far, setting up a Kubernetes cluster manually is easily the most complex. Kubernetes
itself is made up of many components, as well as settings. If any one component is incorrect or a
setting is misconfigured, the entire process can fail. In this section, a great deal of care and attention
was spent to ensure (as much as possible) that the process works to the point where it’s completely
reproducible and has been broken down to only the required components to simplify everything.
However, if the process doesn’t work out well when you go to try it, don’t worry - it’s perfectly fine if
we encounter an issue. We’re still learning, and fixing things is the best way to learn. So the bottom
line is to have fun, and be patient.

What does a typical Kubernetes cluster look like? When it comes to a production installation in an
actual data center, having Kubernetes installed on multiple servers is commonplace. Typically, one of
them will act as the controller node, and then you can add as many worker nodes as you need.

Chapter 18 393

As your needs expand, you can add additional servers to provide more worker nodes to your cluster.
Setting up a controller Kubernetes node and then individual workers is a great way to see the actual
relationship in action. And that’s exactly what we’re going to do in this section.

As I walk you through the process, I’m going to do so utilizing three VMs. The first will be the controller,
and the remaining two will be workers. On your end, it doesn’t really matter how many workers you
decide to go with. You can have a single worker, or a dozen—however many you’d like to set up is fine.
If you do set up more nodes than I do, then you would simply repeat the commands in this section for
the additional nodes. For the nodes on your end, feel free to use whatever combination of physical or
VMs makes sense and fits within the resources of the equipment you have available.

Before we get started, you’ll want to have already installed Ubuntu Server on each machine and install
all of the updates. It’s also a good idea for you to create a user for yourself if you haven’t already done
so. The remainder of this section will assume you’ve already set up Ubuntu on each. After you’ve
installed Ubuntu on everything, it’s a good idea to also configure the hostnames on each node as well
to make it easier to tell them apart. For example, on the node that I’m intending to use as the controller,
I’m going to set the hostname as controller. For the workers, I’ll name them node-01 and node-02
respectively. You can name yours in whatever theme makes sense, but the reason I specifically mention
it is to make sure that you name them something, as by default they’ll each show the same hostname
in the command prompt, and that may be confusing.

Now that you have everything you need, let’s set up Kubernetes!

Preliminary setup
In this section, we’re going to complete some miscellaneous setup tasks before we actually start building
our cluster. These are basically the prerequisites for our cluster to function.

We should first ensure that each of the servers we intend on using for the cluster has either a static
lease, or a static IP that will not change. You can change your server’s IP address at any time, but with
Kubernetes, there’s some additional steps involved if you do change the IP later. For this reason, I
suggest setting your static lease or static IP right now, before we build the cluster. That way, you won’t
have to worry about that later. The process was covered in Chapter 11, Setting Up Network Services, so
I won’t repeat that here. On your side, be sure to set up a static lease or static IP, and then continue
further with our setup here.

Next, if the devices you’ve selected for this exercise includes servers that are being built using the
Raspberry Pi, then there are some special requirements that are specific to the Pi. If you are using
one or more Raspberry Pi units, be sure to complete this step (otherwise, skip this if you’re NOT using
the Raspberry Pi).

To set boot parameters specific to the Raspberry Pi, open up the following file in your editor of choice:

sudo nano /boot/firmware/cmdline.txt

Container Orchestration394

What you’re about to do in this file, is add some cgroup options to control how Kubernetes is able
to interact with the hardware of your device. You’ll want to add the following options to the existing
line within the file. Don’t create a new line. Instead, add these options to the very end of the first (and
only) line within that file:

cgroup_enable=cpuset cgroup_enable=memory cgroup_memory=1 swapaccount=1

Save and exit the file, and that should be the only change we’ll be making that’s specific to the Raspberry
Pi.

In order to build a Kubernetes cluster, we’ll need to set up something called a Container Runtime. A
Container Runtime is the means by which Kubernetes will run containers within the cluster. Without
a runtime, there’s no ability for Kubernetes to run even a single container. While Kubernetes is a
container orchestration solution, it doesn’t mandate which container runtime you use. The suggested
runtime known as containerd, so that’s what we’ll use in our cluster. Other container runtimes include
(but aren’t limited to) Docker, CRI-O, and there’s others. We’ve already worked with Docker in this book,
but for our cluster, we’re going to deploy it with the suggested containerd runtime.

When it comes to the containers we can run, there’s no difference - containerd for example can run
Docker containers just like we’ve been doing. So even though we’re going to go with a different container
runtime, it shouldn’t really make a difference at all when it comes to the end result.

In this section, the commands that I’m going to have you run should be executed on each of the
instances you plan on using with Kubernetes, regardless of whether or not you’re working with the
intended controller or a node; these commands need to be run on each. There will be commands
specific to the controller and the nodes later on, but I’ll mention the intended target if it’s something
I’d like you to do on specifically one or the other.

The first thing we’re going to do is install the containerd package:

sudo apt install containerd

After the package is installed, we’ll check the status of it and ensure that it’s running:

systemctl status containerd

We should see that the unit is running:

Figure 18.10: Checking the status of the containerd runtime

Chapter 18 395

We’re not quite done with containerd, though. It’s going to need some default configuration in order
to function properly, but by default, there’s no sample config provided automatically. Let’s create that
config, starting with adding a directory to our server to house the configuration file:

sudo mkdir /etc/containerd

Next, we’ll create the config file for containerd with the following command:

containerd config default | sudo tee /etc/containerd/config.toml

That command will not only create the default configuration file for containerd, it also prints the
configuration information to the screen as well so we can see what the default values are. However,
while most of the default settings are fine, we’ll need to make some adjustments to this file. Open up
the /etc/containerd/config.toml file in your editor of choice.

The first change to make to this file, is to set the cgroup driver to systemd. To do so, look for the
following line:

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]

Several lines below that, you’ll see the following line:

SystemdCgroup = false

Change that line to true instead:

SystemdCgroup = true

At this point, we’re done with containerd for now. Let’s move on and configure some important
system tweaks. The first of these is disabling swap. Although it’s usually not a good idea to run a server
without swap, setting up a Kubernetes cluster is the exception to this. In fact, when we go to initialize
the cluster later, the process will actually abort if swap is enabled. So let’s take care of disabling it now.

First, we’ll run the following command to disable swap:

sudo swapoff -a

After doing this, if we run free -m we should see all zero’s for swap:

Figure 18.11: Running the free -m command to check that swap is disabled

However, the command that we’ve just run to disable swap was not a permanent change. When we
reboot our server, swap will be automatically re-enabled. In order to disable swap for good, we’ll need
to edit the /etc/fstab file and comment out the line that activates swap during boot.

Container Orchestration396

The following screenshot shows an example configuration line for swap, but it’s been commented out
by inserting the # character at the beginning of that line:

Figure 18.12: The /etc/fstab file, with the swap line commented out

At this point, swap should be turned off, and considering we’ve commented out the swap line in the
/etc/fstab file, swap won’t be re-enabled the next time we start our server.

Next, we’ll need to make a change to the /etc/sysctl.conf file to enable bridging. This is similar
to what we worked through as we set up an internet gateway back in Chapter 11, Setting Up Network
Services. Once we’ve opened up the /etc/sysctl.conf file in an editor, we’ll need to uncomment the
following line:

#net.ipv4.ip_forward=1

It should now look like this:

net.ipv4.ip forward=1

With that line uncommented, bridging should be enabled the next time we start our server.

Next, we’ll create the following file, which we’ll use to ensure a required kernel module is loaded
when the server starts:

sudo nano /etc/modules-load.d/k8s.conf

Inside that file, we’ll add the following:

br_netfilter

That’s actually it for that file, so save and exit the editor. The br_netfilter module assists with
networking for our eventual Kubernetes cluster, and will need to be enabled in order for the cluster
to function. By creating the /etc/modules-load.d/k8s.conf file, we’re ensuring this kernel module
is loaded automatically when we start our server.

Before we continue, further, let’s take a moment and ensure we’ve done everything we need to do up
to now. At this point, on each of the servers you intend to use with Kubernetes (the controller as well
as the nodes) you should’ve accomplished the following:

•	 Installed all updates
•	 Set a hostname
•	 Set up a static IP or lease on each node
•	 Set Raspberry Pi-specific boot options (if you’re using a Raspberry Pi)

Chapter 18 397

•	 Installed containerd
•	 Created the /etc/containerd/config.toml file for containerd and also set the cgroup driver
•	 Disabled swap
•	 Added the /etc/modules-load.d/k8s.conf file with the br_netfilter module listed inside
•	 Edited the /etc/sysctl.conf file to enable bridging

All of the above should’ve been completed on every server you plan to use with your cluster. Once
you’re sure that you’ve performed each of those tasks, we should reboot each of our nodes:

sudo reboot

Once your nodes finish starting back up, we can proceed to actually install Kubernetes.

Installing Kubernetes
Now it’s finally time to start building our cluster, and we’ll start by installing the required packages.
To do so, we’ll need to add the appropriate repository so we can have access to the required packages
for installing Kubernetes. To add the repository, we’ll first add the key for the repository so our server
will accept it as a trusted resource:

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg https://
packages.cloud.google.com/apt/doc/apt-key.gpg

To add the actual repository itself, we will run the following command:

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg]
https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/apt/sources.
list.d/kubernetes.list

After adding the repository, we’ll update our local index:

sudo apt update

What you may notice is that the repository URL references xenial instead of the actual codename for
Ubuntu 22.04, which is jammy (short for Jammy Jellyfish). At the time of writing, there is no dedicated
Kubernetes repository for Ubuntu 22.04 yet, but the process will still work just fine. It’s possible that
by the time you’re reading this, there will be a dedicated repository for 22.04. But for now, we can use
the line mentioned above for our repository file.

Next, we can install the packages required for Kubernetes:

sudo apt install kubeadm kubectl kubelet

We’re installing three packages, kubeadm, kubectl, and kubelet:

•	 kubeadm: The kubeadm package gives us tools we can use to “bootstrap” our cluster. We can
use this tool to initialize a new cluster, join a node to an existing clusterand upgrade the cluster
to a newer version.

•	 kubectl: This package provides us with the Kubernetes command-line tool, kubectl. We will
use this tool to interact with our cluster and manage it.

Container Orchestration398

•	 kubelet: The Kubernetes kubelet acts as an agent that facilitates communication between
nodes. It also exposes API endpoints that can be used to enable additional communication
and features.

Unlike all of the previous commands we’ve run through so far while setting up our cluster, the following
will be entered and ran only on the node that you’ve designated as the controller (before you run it,
read the paragraph that follows to know how to customize the command):

sudo kubeadm init --control-plane-endpoint=172.16.250.216 --node-name
controller --pod-network-cidr=10.244.0.0/16

The previous kubeadm init command should be customized a bit, before you run it. There’s a few things
you should change to ensure they match your environment. In fact, I bolded the individual settings
you should customize. I’ll also describe some additional details about those particular settings now.

--control-plane-endpoint=172.16.250.216: For this option, the IP address that is mentioned here
should be the same IP address that’s assigned to your server. I filled in the value I used for my test
server, but you should make sure this matches the actual IP on your side. Since this is a very specific
setting, this is one of the reasons why I recommended you finalize your IP address for your nodes
before you set them up in the cluster.

--node-name controller: When I set up my test server, I simplified its hostname down to simply
controller. On your side, you can set this to match your controller’s hostname as well.

Note that I didn’t bold the second IP address in the command, 10.244.0.0/16. The reason for this, is
that you should not change that particular IP declaration. That’s actually the IP scheme for the Pod
Network, which is an internal network to Kubernetes and is not accessible from the outside. You can
actually customize this to your own scheme, but then you’d have to change other settings as well. Since
this is a dedicated internal network, there shouldn’t be any need to change this so I recommend to
leave it as-is.

The kubeadm init command that I mentioned earlier, after you customize it, will initialize the cluster
and assign it a Pod Network. If the initialization process is successful, you’ll see a join command
printed to the terminal at the end. If you do see it, then congratulations! You’ve successfully set up a
Kubernetes cluster. It’s not a very usable cluster yet, because we haven’t added any worker nodes to
it at this point. But you do, by definition, have a Kubernetes cluster in existence at this point. On my
controller node, I see the following output:

Figure 18.13: Successful initialization of a Kubernetes cluster, showing a join command

Chapter 18 399

The join command that’s shown to you after the process is complete is very special—you can copy that
command and paste it into the command prompt of a worker node to join it to the cluster, but don’t
do that just yet. For now, copy that command and store it somewhere safe. You don’t want to allow
others to see it, because it contains a hash value that’s specific to your cluster and allows someone to
join nodes to it. Technically, showing my join command with the hash value is the last thing I should
do in a book that will be seen and read by many people, but since this is just a test cluster with no
actual value, I don’t mind you seeing it.

Also, in the same output as the join command, are three additional commands we should run on the
controller node. If you scroll up in your terminal window to before the join command, you should
see output similar to the following:

Figure 18.14: Output of the initialization process for Kubernetes showing additional commands to run

For those three commands, you can copy and paste them as-is right back into the terminal, one by one.
Go ahead and do that. Essentially what you’re doing is creating a local config directory for kubectl
right in your user’s home directory. Then, you’re copying the admin.conf file from /etc/kubernetes
and storing it in the newly created .kube folder in your home directory with a new name of config.
Finally, you’re changing ownership of the .kube directory to be owned by your user. This will allow
your user account to manage Kubernetes with the kubectl command, without needing to be logged
in as root or use sudo.

Kubernetes itself consists of multiple Pods, within which your containers will run. We haven’t deployed
any containers yet, we’ll do that later. But even though we didn’t deploy any containers ourselves, there
are some that are actually running already. See for yourself:

kubectl get pods --all-namespaces

On my end, I see the following:

Figure 18.15: Checking the status of pods running in our Kubernetes cluster

Container Orchestration400

Notice that the namespace for each of these Pods is kube-system. This is a special namespace, where
Pods related to the Kubernetes cluster itself will run. We didn’t explicitly ask for these to run, they’re
run as part of the cluster and provide essential functionality. Another important column is STATUS. In
the screenshot, we see that most of them are Running. The first two, though are in a state of Pending,
which means that they’re not quite ready yet. This is actually expected, we haven’t deployed an overlay
network yet, which is required for the coredns pods to function.

Other Pods may also show a status of Pending, and those should automatically switch to Running when
they finish setting themselves up. How long this takes depends on the speed of your hardware, but it
should only take a few minutes.

The others will eventually change to a state of Running once their setup is finished – but they might
also crash as well, and respawn. Since there’s no overlay network yet, the pods aren’t able to fully
communicate yet. So if you see some errors, don’t worry about that yet.

Let’s deploy an overlay network so we can make the cluster more stable:

kubectl apply -f https://raw.githubusercontent.com/flannel-io/flannel/master/
Documentation/kube-flannel.yml

When we check the status again, we should see an additional Pod running (kube-flannel-ds), and
the Pods that had a state of Pending previously should now be Running:

Figure 18.16: Checking the status of Pods running in our Kubernetes cluster again

So, what exactly did we do? Flannel is a networking layer that can run on Kubernetes. Networking
is required for Kubernetes to function, as Pods within the cluster need to be able to communicate
with one another. There are multiple different types of networking models you can implement in
Kubernetes, Flannel is just one available option. If you’re using a cloud provider, such as AWS, then
the networking model is typically chosen for you. Since we’re building a cluster from scratch, we have
to choose a networking model—Kubernetes itself doesn’t come with one.

Overlay networks are virtual networks that are created to serve as a network on top of
another network. The concept is not specific to Kubernetes, but when used in Kubernetes,
the overlay network manages communication between nodes.

Chapter 18 401

Setting up networking in a cluster that was manually created can be quite an involved task, Flannel is
easy to set up (we simply deploy it) and its defaults meet the needs of Kubernetes and will get us up
and running quickly. There are definitely some other options for the networking layer to consider for
your cluster, but Flannel is good enough for us for what we need right now.

Next, it’s time to watch the magic happen and join worker nodes to our cluster. We can check the status
of all of our nodes with the following command:

kubectl get nodes

Right now though, we only have the controller showing up in the output since we haven’t yet added
any nodes:

Figure 18.17: Checking the status of the nodes within the cluster

To add a worker to our cluster, we can enter the join command we saw earlier on a node designated
as a worker. If you recall, the join command was shown in the terminal when we first initialized our
cluster. The command will look something like the following, which I’ve shortened a bit to fit on this
page (I’ve added sudo to the beginning):

sudo kubeadm join 172.16.250.216:6443 --token zu5u3x.p45x0qkjl37ine6i \
 --discovery-token-ca-cert-hash sha256...1360c

You should consider the join command as private, and not show it to anyone, nor should you upload
it to a Git repository or a documentation server. Reason being, it could be used by an outside actor to
join something to your cluster. In my case, I truncated the hash so it’s impossible to reproduce, but
keep this in mind going forward.

For you, the command will be very different. The IP address in the command is for the controller,
which will no doubt be different on your end. The hash value will be different as well. Basically, just
copy the join command you were provided while initializing the cluster on the controller and paste it
into each of your worker nodes. You should see a message in the output that the node was successfully
added to the cluster:

Figure 18.18: Successfully adding a worker node to the Kubernetes cluster

Container Orchestration402

After you’ve run the join command on each of your worker nodes (on however many you decided to
create), you can run the kubectl get nodes command again on the controller and verify the new
nodes appear on the list. I added two nodes, so I see the following output on my end:

Figure 18.19: Output of kubectl showing worker nodes now added to the cluster

Once all of the nodes you plan on deploying show a STATUS of Ready, then your cluster setup is complete!

If you run into any trouble joining a node to the cluster, you can try to regenerate the join token. After
a while, it’s possible the original could’ve expired and the certificates won’t be valid. To regenerate the
join command, run the following from the controller node:

kubeadm token create --print-join-command

This will print a brand new join command you can use in place of the original.

At this point, our cluster exists and has one or more worker nodes ready to do our bidding. The next
step is to actually use the cluster and deploy a container. That’s exactly what we’ll do in the next section.

Deploying containers via Kubernetes
Now it’s time to see our work pay off, and we can successfully use the cluster we’ve created. At this
point, you should have either set up MicroK8s, or manually created a cluster as we’ve done in the
previous section. In either case, the result is the same: we have a cluster available that we can use to
deploy containers.

Keep in mind that if you’re using MicroK8s, you might need to prepend microk8s in front of kubectl
commands, depending on how you set up MicroK8s. I’ll leave it up to you to add microk8s to the front
of such commands as you go along, if you’re using MicroK8s and you don’t have it set up to simplify
microk8s kubectl to kubectl.

Kubernetes utilizes files created in the YAML format to receive instructions. Does that sound familiar?
In Chapter 15, Automating Server Configuration with Ansible, we worked with YAML files as that’s the
format that Ansible playbooks are written in. YAML isn’t specific to Ansible; it’s used with many
different applications and services, and Kubernetes will also recognize the YAML format to contain
instructions for how to deploy something. Here’s an example YAML file to get us started. This one in
particular is intended to launch an NGINX container within our cluster:

apiVersion: v1
kind: Pod
metadata:

Chapter 18 403

 name: nginx-example
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: linuxserver/nginx
 ports:
 - containerPort: 80
 name: "nginx-http"

Before I show you how to run it, let’s walk through the file and understand what’s going on.

apiVersion: v1
kind: Pod

First, we’re identifying the API version we intend to use, and then we’re setting the kind of deployment
we intend to set up. In this case, we’re deploying a pod, which is what our containers run inside of in
Kubernetes. One or more containers can run in a Pod, and a worker node can run one or more Pods
at the same time.

metadata:
 name: nginx-example
 labels:
 app: nginx

Next, we add some metadata. Metadata allows us to set special parameters specific to our deployment.
The first item of metadata we’re customizing is the name, we’re naming the Pod nginx-example in this
case. We’re also able to set up labels with metadata, which is a “name: value” key pair that allows us
to add additional values to our Pod that we can refer to later. In this case, we’re creating a label called
app and setting it to nginx. This name is arbitrary; we could call it potato if we wanted to. Setting this
to nginx is a descriptive label that makes it obvious to someone else what we are intending to run here.

spec:
 containers:
 - name: nginx image: linuxserver/nginx

Moving on, the spec section allows us to specify what exactly we want to run in our Pod, and how we
want it to run. We want to run a container in our Pod, and specifically a container that we’ll name
nginx, which we’ll retrieve from a registry called linuxserver, and we’re requesting a container from
that registry by the name of nginx.

Container Orchestration404

The registry we’re fetching the container image from deserves some extra explanation. This registry
in particular is located at https://linuxserver.io, which is a special service that makes container
images available for us to download and use. The site has a documentation section that gives us
information about each of the container images they offer. Why use the linuxserver.io registry?
The reason is that their service makes available various container images that support a variety of
architectures, including x86 as well as ARM. The latter is especially important, because if you’re using
Raspberry Pi units for your cluster, they won’t be able to utilize container images created for x86. If
you do attempt to run a container image that does not support ARM, then the container will fail to
launch on a Pi. Since linuxserver.io makes container images available for multiple architectures,
they should work fine regardless of the type of device you decided to use for your cluster. Whether
you’re using an x86 physical server or VM for your worker node, the nginx container we’re retrieving
from that registry should function just fine.

 ports:
 - containerPort: 80
 name: "nginx-http"

In the last few lines, we’re setting up a container port of 80, which is the standard for a web server.
This is the default port that NGINX listens on when it runs, and NGINX is what we’re intending to run
inside our container. We’re applying a name to this port declaration, and calling it nginx-http. We
can refer to that name in a subsequent YAML file (if we have more than one) and that works better
than having to type the same port in each file. Referring to a port by name is not all that different from
variables in scripting or programming languages.

Before we continue, there’s a bit of difference regarding how you deploy resources to a cluster within
MicroK8s compared to a cluster that was set up manually on actual servers. The commands going
forward will assume you’ve set up a cluster manually. If you’re using MicroK8s on Windows or macOS,
you’ll need to copy any deployment files you create into the MicroK8s VM that’s created as part of the
installation of MicroK8s. If you try to save a file locally and deploy it as we’re about to do in the next
paragraph, it will fail, because the file will not be found on the VM. To copy a deployment file to the
MicroK8s VM to enable you to deploy it, you can use the following command to copy the file into the
VM first:

multipass transfer <filename.yml> microk8s-vm:

As we go along, keep in mind that whenever we’re deploying a file, you’ll have to make sure to transfer
it first. Also, a manually created cluster uses the kubectl command, while MicroK8s requires you to
prefix kubectl with microk8s, so such commands become microk8s kubectl instead of just kubectl.

Let’s go ahead and deploy the container to our cluster. Assuming you named the YAML file as pod.yml,
you can deploy it with the following command on the controller node:

kubectl apply -f pod.yml

As mentioned previously, the kubectl command allows us to control our cluster. The -f option accepts
a file as input, and we’re pointing it to the YAML file that we’ve created.

https://linuxserver.io
http://linuxserver.io
http://linuxserver.io

Chapter 18 405

Once you’ve run the command, you’ll be able to check the status of the deployment with the following
command:

kubectl get pods

For me, I see the following when I run it:

Figure 18.20: Checking the status of a container deployment

From the output in my case, I can see that the process was successful. The STATUS is Running. What
we don’t see is what worker node the Pod is running on. It’s nice to know that it’s Running, but where?
We can get more information by adding the -o wide option to the end of the command:

 kubectl get pods -o wide

The output contains much more information, so much that a screenshot of it won’t fit on this page.
The focus though, is that among the extra fields we have with this version of the command is the node
field, which shows us which worker node is handling this deployment. We’ll even see an IP address
assigned to the Pod as well.

We can use the IP address shown for the Pod to access the application running inside the container.
In my case, my Pod was given an IP address of 10.244.1.2, so I can use the curl command to access
the default NGINX web page:

curl 10.244.1.2

The output that’s shown in the terminal after running that command should be the HTML for the default
NGINX web page. Note that the curl command may not be available in your Ubuntu installation, so
you may need to install the required package first:

sudo apt install curl

We have one potential issue though: if you want to be able to access an application running inside
the cluster on a machine other than the controller or worker nodes, it won’t work. By default, there’s
nothing in place to route traffic from your LAN to your cluster. This means that in my case, the IP
address of 10.244.1.2 that was given to my Pod was provided to it by the Pod Network, the router on
my network doesn’t understand that IP address scheme so trying to access it from another machine on
the LAN will fail. What’s interesting is that you can access the application from any other node within
the cluster. In my case, the NGINX Pod is running on the first worker node. However, I can actually run
the previous curl command from worker #2 even though the Pod isn’t running there, and I’ll get the
same exact output. This works because the Pod Network is cluster-wide; it’s not specific to any one node.

Container Orchestration406

The IP address of 10.244.1.2 is unique to the entire cluster, so if I run another container it won’t
receive that same IP address, and every node within the cluster knows how to internally route to IPs
within that network.

Not allowing outside devices to access applications within the cluster is great for security purposes.
After all, a hacker can’t break into a container that they can’t even route to. But the entire point of
running a Kubernetes cluster is to make applications available to our network, so how do we do that?
This can be a very confusing topic for newcomers, especially when we’re setting up a cluster manually.
If we’re using a cloud service such as AWS or Google Cloud, they add an additional layer on top of their
Kubernetes implementation that facilitates routing traffic in and out of the cluster. Since we set up
our cluster manually, we don’t have anything like that in place.

When it comes to building services and networking components designed to handle networking to
bridge our LAN and Kubernetes cluster, that’s an expansive topic that can span a few chapters in and
of itself. But a simple solution for us is to create a NodePort Service. These are two new concepts here,
a Service as well as NodePort. When it comes to a Service, a Pod isn’t the only thing we can deploy
within our cluster. There are several different things we can deploy, and a Service is a method of
exposing a Kubernetes Pod, and a NodePort is a specific type of service that gives us a specific method
for facilitating a way of accessing it. What NodePort itself does is expose a port running inside a Pod
to a port on each cluster node.

Here’s a file we can deploy to create a NodePort Service for our Pod:

apiVersion: v1
kind: Service
metadata:
 name: nginx-example
spec:
 type: NodePort
 ports:
 - name: http
 port: 80
 nodePort: 30080
 targetPort: nginx-http
 selector:
 app: nginx

As you can see, the kind is Service; as this time, we’re deploying a service to our cluster to complement
the Pod we’ve deployed previously. The type of service is NodePort, and we are mapping port 80 within
the Pod to port 30080 in our cluster. I chose port 30080 arbitrarily. With NodePort, we can utilize ports
30000 through 32767. The selector in this file is set to nginx, which is the same selector we used while
creating the Pod. Selectors allow us to “select” Kubernetes resources via a name we assign them, to
make it easier to refer to them later.

Chapter 18 407

Let’s deploy our service:

kubectl apply -f service-nodeport.yml

Assuming we’ve typed everything in the YAML file for the service properly, we can retrieve the status
of services running within our cluster with the following command:

kubectl get service

If everything has gone well, you should see output similar to the following:

Figure 18.21: Checking the status of a service deployment

In the output, we should see the status of our service deployment, which is the second line in the
screenshot. We can also see the port mapping for it, showing that port 30080 should be exposed to
the outside. To test that it’s actually working, we can open a web browser on a machine that is within
our LAN, and it should be able to access the controller’s IP address at port 30080:

Figure 18.22: Accessing a web page served by an NGINX container in a cluster from within a web
browser

Another interesting benefit is that we didn’t actually have to use the IP address of our controller node,
we can use the IP address of a worker node as well and see the same default page. The reason this
works is that the mapping of port 30080 to port 80 inside the Pod is cluster-wide, just as the internal
Pod Network is also cluster-wide. Accessing a resource on one is the same as accessing the same
resource on any other, as the request will be directed toward whichever node is running the Pod that
matches the request.

Container Orchestration408

When it comes to removing a Pod or a Service, assuming you want to decommission something
running in your cluster, the syntax for that is fairly straightforward. To remove our nginx-example
Pod, for example, you can run this:

kubectl delete pod nginx-example

Similarly, to delete our service, we can run this:

kubectl delete service nginx-example

At this point, you not only have a working cluster, but you also have the ability to deploy containers
to it and set them up to be accessible from outside the Pod Network. From here, I recommend you
practice with this a bit and attempt to run additional containers and apps to have a bit of fun with it.

Summary
In this chapter, we took containerization to the next level and implemented Kubernetes. Kubernetes
provides us with orchestration for our containers, enabling us to more intelligently manage our running
containers and implement services. Kubernetes itself is a very expansive topic, and there are many
additional features and benefits we can explore. But for the goal of getting set up on Kubernetes and
running containers with it, we did what we needed to do. I recommend that you continue studying
Kubernetes and expand your knowledge, as it’s a very worthwhile subject to dig deeper into.

Speaking of subjects that are worthwhile to learn, in the next chapter, we’re going to learn how to
deploy Ubuntu in the cloud! Specifically, we’ll get started with Amazon Web Services, which is a very
popular cloud platform.

Relevant videos
•	 Setting up a Kubernetes Cluster (LearnLinuxTV): https://linux.video/setup-k8s

Further reading
•	 MicroK8s website: https://learnlinux.link/mk8s
•	 MicroK8s addons: https://learnlinux.link/mk8s-addons

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://linux.video/setup-k8s
https://learnlinux.link/mk8s
https://learnlinux.link/mk8s-addons
https://packt.link/LWaZ0

19
Deploying Ubuntu in the Cloud

Up until now, in each chapter, we’ve been working with an instance of Ubuntu installed on either a
local virtual machine, a physical computer or server, or even a Raspberry Pi. We’ve learned how to
deploy Ubuntu on such devices, and we’ve even gone as far as deploying virtual machines as well as
containers. These on-premises devices have served us well, but the concept of cloud computing has
become quite popular, even more so since the previous edition of this book. In this chapter, we’re
going to take a look at running Ubuntu in the cloud. Specifically, we’ll deploy an Ubuntu instance on
Amazon Web Services (AWS), which is a very popular platform for cloud computing. While we won’t
go into extreme detail on AWS (it’s an extremely large and complex platform), you’ll definitely get a feel
for what it’s like to deploy resources in the cloud, which will be more than enough to get you started.

This exploration will involve the following topics:

•	 Understanding the difference between on-premises and cloud infrastructure
•	 Important considerations when considering cloud computing as a potential solution
•	 Becoming familiar with some basic AWS concepts
•	 Creating an AWS account
•	 Choosing a region
•	 Deploying Ubuntu as an AWS EC2 instance
•	 Creating and deploying Ubuntu AMIs
•	 Automatically scaling Ubuntu EC2 deployments with Auto Scaling
•	 Keeping costs down: understanding how to save money and make cost-effective decisions
•	 Taking the cloud further: additional resources to grow your knowledge

Since cloud computing is something of a different mindset than we’re used to, we’ll first go through
a few sections that are dedicated to helping us understand the difference, as well as some of the con-
siderations we should make before choosing to implement Ubuntu in the cloud. In the next section,
we’ll explore how the concept of cloud computing differs from on-premises hardware.

Deploying Ubuntu in the Cloud410

Understanding the difference between on-premises and
cloud infrastructure
As mentioned at the very beginning of this chapter, we’ve been solely utilizing on-premises Ubuntu
installations thus far. Even if we’re running Ubuntu on a virtual machine in our data center, it’s still
considered an on-premises installation even when it’s not on physical hardware. In short, an on-prem-
ises installation is something that resides locally with us, regardless of the type of server that serves
as the foundation.

The first difference when it comes to cloud computing might be somewhat obvious: it’s the exact op-
posite of a resource being on-premises. With a cloud instance of Ubuntu, it’s someone else’s hardware
that it runs on. Most of the time, we won’t know what kind of server a cloud instance is running on—
when we subscribe to the services of a cloud provider and pay a fee to run a server on that platform,
we’re able to access the operating system just like we would a virtual machine, with little knowledge
of the underlying data center. Although utilizing a cloud instance will have some sort of recurring cost,
we don’t need to worry about monitoring hardware components or replacing failed physical devices.
With the cloud, that becomes someone else’s problem.

There are various cloud providers you can choose from, with AWS, Google Cloud Platform (GCP), and
Microsoft Azure being popular choices. Those are three very popular platforms. Each of them has its
own strengths and weaknesses, and even some differentiation as far as how resources on the platform
are managed. For the most part, there’s no right or wrong choice here, it’s important to research each
of the platforms and make the appropriate decision for you and your organization.

In addition to cloud providers, there are also Virtual Private Server (VPS) providers. There used to be
more of a distinction between a full cloud provider and a VPS provider – but as time goes on, the line
between the two types of platforms is becoming increasingly thin. For the most part, VPS providers
are lighter or “simpler” alternatives to standard cloud providers. They provide the same core features,
such as allowing you to build virtual machines – but they don’t usually offer as many features as full
cloud providers do. Nowadays, VPS providers are rolling out new features regularly and are catching
up to cloud providers in terms of features. Examples of popular VPS providers include DigitalOcean
and Linode, among others. In fact, even Amazon themselves have gotten into the VPS business, of-
fering a VPS alternative to their own platform, called Amazon Lightsail.

For your organization, which should you choose between a full cloud provider and VPS provider? Many
administrators would answer this question without hesitation and recommend a full cloud provider.
I can certainly see their point – why go with a “lighter” platform when you can use a solution that has
all the bells and whistles? However, based on my experience with many organizations, I wouldn’t rec-
ommend going with a full cloud provider without first finding out if a VPS provider has all the features
you need. The reason for this is that one of the trade-offs of having more features is that complexity
increases. With an increase in complexity comes a larger responsibility to manage resources on that
platform. And that complexity can create a very large administration overhead. For that reason, I
don’t recommend full cloud providers like AWS or Azure to small organizations with limited IT staff.
For those organizations, VPS providers would be best as the burden of administration is lower. Larger
organizations with a team of administrators should have no problem tackling something like AWS.

Chapter 19 411

As I mentioned, we’ll be going over AWS in this chapter. Even if you’re not considering migrating re-
sources to the cloud, it’s something that’s still worth practicing. If nothing else, you’ll gain some famil-
iarity with another platform, which will increase your skillset and marketability. And I don’t know about
you, but speaking for myself, I really enjoy checking out technologies and learning something new.

However, perhaps I’m getting ahead of myself. Before you migrate anything to the cloud, the most
important question to ask right now is whether or not creating cloud resources is appropriate for your
goals. That’s exactly what we’ll explore in the next section. We’ll also explore some of the differences
in mindset when it comes to cloud computing as well.

Important considerations when considering cloud
computing as a potential solution
Before choosing to sign up with a provider, it’s important to first make sure that creating cloud re-
sources is a good idea for you or your organization in the first place. Often, IT professionals can get so
excited when it comes to a new trend that they may make the mistake of trying to use such a service
even when it doesn’t make sense to do so. Above all, as an administrator, it’s important to utilize the
best tool available for whatever it is that you wish to accomplish, instead of using a technology just
because you’re excited about it. Cloud computing is awesome for sure, but for some use cases, it’s
just not a good fit. This is similar to containers as well: containerization is an exciting technology but
some applications just don’t run well on that platform. It takes trial and error.

There are some considerable benefits when it comes to cloud computing. When it comes to physical
servers, the hardware will fail eventually. It’s not a matter of “if” but “when.” All hardware will fail
eventually. And even if you have hardware that doesn’t end up failing in the short term and lasts for a
long time, it will be made obsolete by more powerful hardware that is more efficient. When it comes
to managing physical servers, you’ll need to replace the hardware eventually.

This is also true when it comes to cloud computing; the hardware such services run on will need to be
replaced whenever it fails or becomes obsolete (whichever happens first). The difference is that when
that happens, the liability on you (the administrator) is greatly reduced. You won’t have to order a new
server, replace parts, or even pay attention to the hardware at all. It’s solely the responsibility of the
cloud service or VPS provider to keep track of that. A virtual machine you run on a cloud platform
could be running on a physical server that’s a couple of years old, and then tomorrow be moved to a
brand-new piece of hardware. And you might not even be aware that it was ever moved.

The trade-off, though, is potentially the cost. The reason why I mention cost as a “potential” trade-off
is that whether or not it’s cheaper for your organization to purchase physical servers or pay a monthly
fee for servers in the cloud comes down to which offers a better Return on Investment (ROI). To bet-
ter understand this, consider an organization that utilizes only on-premises hardware for their data
center with no cloud resources being used at all. Let’s also assume that every 3 years or so, they have
to replace some of the more critical servers with newer hardware; and every 5-10 years the less-im-
portant servers are replaced. There’s also a need to pay for full-time administrators with specialties
in managing physical hardware, as well as maintaining a cooling system and making sure a room is
available to designate as a data center. Also, consider the electric bill for running your own data center.
Add all of this up—how much is it costing the organization on average?

Deploying Ubuntu in the Cloud412

With physical infrastructure, you’re paying an up-front cost to purchase servers every time you need
to do so. With cloud computing, you never have to purchase physical server hardware, but instead
you’re paying a fee each and every month for the privilege of utilizing cloud infrastructure. When you
add up the monthly costs for cloud resources, how much would that cost the organization? Would it
cost more than running physical hardware or less?

Often, whether or not running a server in the cloud results in cost savings (or ends up being cost
prohibitive) comes down to what types of services you wish to use on that platform. Running more
virtual machines in the cloud is generally fairly inexpensive, and might often result in cost savings
when compared to running physical infrastructure of your own. However, an example of something
that might end up being cost prohibitive in the cloud is storage.

If your organization doesn’t store much data, then storage costs won’t really be a concern. Many com-
panies are perfectly satisfied with employees utilizing something like Google Drive for shared storage
and won’t even need cloud storage at all. Some organizations, especially those that develop software,
have massive storage needs. For these companies, there could be tens or even hundreds of terabytes of
data being stored, as well as the bandwidth costs for the data going in and out of the company. If you
were to attempt to migrate such a large amount of data to a cloud server provider, you wouldn’t have
to manage the storage hardware anymore, but your costs for cloud storage would go up dramatically
and might easily be much more expensive than it costs you to continue to use physical hardware.
Personally, I’ve seen storage costs result in tens of thousands of dollars extra in monthly billing.

Another consideration is stability. It’s often argued that utilizing a cloud provider will result in a more
stable infrastructure. That mindset seems to make sense at first, considering that by using a cloud
provider you’re no longer responsible for managing the hardware. There’s definitely some truth to the
claim that cloud resources are more stable, but it’s not quite that simple. Cloud providers do experience
downtime, and it happens more often than you’d think.

Cloud providers will often advertise a high level of uptime, often measured in “9s.” For example, AWS
offers a general uptime of 99.999%, as of the date this book is being prepared for publishing. That
sounds great, doesn’t it? Before you get too excited about a cloud provider’s uptime claim, it’s import-
ant to also know what exactly they count as part of that uptime. If an upstream provider, such as a
backend internet resource, goes down and service is completely unavailable, they may not count that
and continue to claim the same amount of uptime. Massive outages of cloud providers are not uncom-
mon; in 2017, Amazon’s S3 service suffered a major outage due to one of their engineers mistyping a
command. In that situation, many services on the internet were unavailable to customers. So while it
is true that a cloud service provider is less likely to suffer an outage than you are to witness hardware
failures, it’s important to keep in mind that outages are still possible. We can’t ever assume any service
(our own or otherwise) is bulletproof.

Automation is a very important consideration with the cloud. If your resources encounter an issue, it’s
a really good idea to have an automated means of re-deploying your important services. On a physical
server, you can set it up exactly as you want it and take an image of the hard drive in case the server
fails. Cloud providers offer you essentially the same service, giving you the ability to create images of
your important servers so you can redeploy them in the future should you need to do so.

Chapter 19 413

If you do go with a cloud provider, make sure you keep regular backups as well as images. And be sure
to keep a copy of at least the most recent backups locally outside of the cloud provider, because if the
cloud provider itself goes down then you also lose the backup. I can probably better summarize this
by advising you to not become over-confident in the stability of your cloud provider. Always assume
your infrastructure will fail eventually, regardless of where it’s located or how stable their marketing
team claims it is.

The warnings I have given around the stability of cloud providers are not intended to scare you away
from using them, but instead to steer you toward maintaining good hygiene with the cloud, just as
you would with physical infrastructure. Basically, to be successful when it comes to managing serv-
ers, you’ll have to assume that cloud providers can fail just as easily as on-premises equipment, and
make sure you’re well prepared if there is ever an issue. Cloud providers actually provide you with all
the tools you need in order to build a stable infrastructure that’s easily reproducible and recoverable.
If you utilize those tools effectively, you shouldn’t have anything to worry about. We’ll explore these
concepts further as we go along, but you can go as far as to have cloud servers recover themselves when
a problem occurs. It all depends on how you architect your solution.

In the next section, we’re going to explore some concepts specific to AWS, so we’ll have a stronger
foundation of knowledge to use for building an actual cloud solution later on in this chapter.

Becoming familiar with some basic AWS concepts
As discussed earlier, AWS is one of several competing cloud service providers. For the purpose of this
chapter, AWS was chosen because more than any other provider, the platform requires an administra-
tor to adopt a completely different mindset when it comes to managing infrastructure. This different
mindset is a healthy one even outside of AWS, so it represents a logical evolution at this point in our
journey.

Up until now, we’ve discussed server installations as essentially pets, meaning we want to keep them
around, make sure they’re healthy, and if something goes wrong, try to fix it. We want to keep our
servers operational for as long as possible. We want to be able to rely on them, and that helps our
organization - customers and clients appreciate using a website or service that is stable, with minimal
or no downtime.

That last part, minimal downtime, doesn’t change regardless of the mindset we use when managing
our infrastructure. Downtime and service disruption is bad in this industry, and that’s always going
to be the case. The difference is what we do about it, and how we go about recovering from it. In fact,
we can even try our best to automatically recover when we have a problem. If the customer never
notices there was ever an issue, even better.

It’s also important that you understand any company policies (and laws) that may exist
regarding data retention, what type of information is allowed to be stored within the
cloud, or any other rule or regulation that might be in place in your area. (GDPR is a great
example of legal requirements.) If in doubt, consulting with your company’s management,
security, and human resources teams would be a great place to start when it comes to what
data-related policies and laws may be applicable while you design your cloud solution.

Deploying Ubuntu in the Cloud414

With AWS, the mindset is different – we consider our servers as disposable, not as pets. This may seem
a bit surprising at first, but if we effectively use the tools we’re provided, we can build an infrastructure
that is scalable. This concept in particular is known as Auto Scaling and is a very important aspect
of AWS. With Auto Scaling, resources are automatically created and destroyed as demand increases
and decreases. For example, let’s say that your web server receives more visitors than normal, and
its CPU is starting to max out. Auto Scaling would then bring up a new web server automatically, and
with a load balancer, route clients between instances as needed to spread the load. You can set the
maximum number of instances that can be brought online, and then when the load decreases, the
servers that were brought online to handle the load will automatically get deleted. This means that
you can architect your cloud solution such that you’ll have the exact number of servers in existence
as you need at any given time.

Another level above Auto Scaling is Auto healing. Just as the name implies, auto healing means that if
your server runs into a problem, it will automatically be “healed,” and in the case of cloud computing,
this means the instance will be disposed of and recreated from a known good image or template. This
is the ultimate goal of AWS (or pretty much any implementation): to have infrastructure that is not
only scalable but also able to recover by itself. For example, perhaps you have a pair of web servers
that handle requests from clients. One of them encounters some sort of issue and fails some sort of
test that would imply that the server is unreliable. Such a test is known as a health check. With auto
healing, a server that fails health checks is considered unhealthy and is deleted. With Auto Scaling,
you also set a minimum number of servers for your application. If the number of servers falls below
the minimum, then a new one is created to replace it. Depending on how you architect your solution,
the customer may notice some degradation if the application is running on fewer servers, but that’s
only temporary. Everything will return back to normal when the new server comes online.

With AWS, Auto Scaling and auto healing are extremely important. I’ve seen many administrators
make the mistake of not utilizing those features of the platform, and that should never be the case.
Without such high-availability features, you risk having your server go away at any moment. This may
be a bigger problem than you think. AWS consists of physical servers all over the world, and just like
any other physical server, hardware failures are not only possible but happen regularly. If your ap-
plication is running on a physical host within an AWS data center that encounters a hardware failure,
your server may get deleted when they go and replace it. With Auto Scaling, this isn’t a problem. A
new virtual server will be brought online to replace the one that was removed.

But without Auto Scaling, this can result in manually having to rebuild your server. Don’t worry though,
we’ll cover Auto Scaling in this very chapter, so you’ll definitely understand how to implement it be-
fore we’re done.

The concepts around high availability are not limited to AWS. Similar features exist on other cloud
platforms as well. The main difference between competing cloud providers is the marketing terms they
use for these features, but you can set up similar infrastructure on each. With AWS, they really focus
on this aspect though, so it’s important to learn. But even if you’re not utilizing AWS in production at
your organization, the concepts around being able to easily recover from disasters are still important
and can still be implemented. If nothing else, you should at least consider implementing automation
for rebuilding servers so you don’t have to do so much manual work if a problem occurs.

Chapter 19 415

Back to AWS: there are many services within the platform that you can use that will provide a variety
of features. In fact, there are well over a hundred different services within the platform. Therefore,
it’s impossible for us to cover each in this chapter. It would be difficult to cover every service even in
a book dedicated only to AWS. But don’t let the number of services overwhelm you; you’ll only need
to learn about the services that are related to what you’re trying to achieve with the platform. For ex-
ample, if your organization doesn’t develop multiplayer computer games, then learning the GameLift
service will be of no benefit to you at all. In this chapter, we’ll focus on the services required to get
you up and running with a basic web server running in the cloud. The following services and terms
will be discussed:

•	 Virtual Private Cloud (VPC): A VPC is a higher-level abstraction of your overall cloud network
and resources. Each of the servers and related services you provision will fit within a VPC. You
can think of a VPC as your overall network. In your organization, you may have various rout-
ers, gateways, firewalls, virtual machines, printers, or other network-connected devices. Your
organization’s network is essentially a VPC in AWS, a software version of a complete network.

•	 Elastic Compute Cloud (EC2): EC2 is the service within AWS that your virtual machines will run
in. Individual virtual machines within AWS are referred to as EC2 instances. You can think of
this service as the AWS equivalent of VMware ESXi, Microsoft Hyper-V, Proxmox, or whatever
virtual machine platform you’re more familiar with. EC2 instances, just like a virtual machine,
have memory and CPU allocated to them and run an operating system. We’ll run Ubuntu in
an EC2 instance before the end of the chapter.

•	 Elastic Block Store (EBS): As you learn more about AWS, you’ll notice that even the simplest
component seems to have a marketing buzzword attached. EBS provides block storage, es-
sentially the same type of storage we’ve been working with all along. So in a nutshell, an EBS
volume is a hard disk. When you create an EC2 instance, the operating system for your server
will run from an EBS volume, and you can set the size of the volume accordingly. We’ll work
through this later in the chapter.

•	 Elastic Load Balancer (ELB): As you may be able to guess from the name, an ELB is the AWS
equivalent of a load balancer and offers similar features. This allows you to have multiple EC2
instances serving your application, and you can create an ELB to route traffic between them.
ELB is actually a feature of EC2 and not its own service.

•	 Identity and Access Management (IAM): IAM is the tool within AWS that you’ll use to create
and manage user accounts, determine user permissions, and even create API keys that can
be used to programmatically access and manage AWS. Basically, it’s your one-stop shop for
all things related to user privileges, regardless of whether the “user” is a human or a script.

•	 Route 53: Although we’re not going to cover Route 53 in this book, I recommend at least
understanding what it is in case you need it in the future. If you do decide to utilize AWS in
production, Route 53 will simplify the process of managing DNS entries and also registering
new domain names. If your organization is a managed service provider, you may find yourself
using this quite a bit.

•	 Simple Storage Service (S3): Amazon’s S3 service is another offering we’re not going to cover
in this chapter, but it’s a good idea to know that it exists and what it’s for, in case you find a use
for it later. S3 is actually a very popular service, and it provides object storage.

Deploying Ubuntu in the Cloud416

Object storage is a new type of storage that is different than a disk (virtual or physical) that you
add to your server, format, and mount. While you can still mount S3 on your server, it doesn’t
have a filesystem (such as ext4 or STON), nor does it understand permissions. It’s simply a
name-object pair, where you store files, and they have a name. With S3, you create “buckets,”
and each bucket can have files stored inside. Each bucket name must be unique. S3 is very
useful if you want to make downloadable files available to your clients or store backup files.

•	 Elastic Kubernetes Service (EKS): In the previous chapter, we covered Kubernetes and even
set up our own cluster. AWS has its own Kubernetes solution, called EKS. Although we’re not
going to cover it in this book, it’s worth considering if you want to continue to use Kubernetes
and have your containers running in a managed service, rather than managing your own
cluster. EKS combines Kubernetes with the flexibility of the AWS platform, so it’s a very useful
service to consider.

•	 Security groups: Access to many AWS resources from the public internet is disabled by de-
fault; security groups are used to determine what is able to access a resource within AWS, and
you can allow or disallow access by IP address as well as port. With regard to EC2 instances,
outbound access is allowed by default, but every port is blocked inbound. You can create a
security group that allows specific IPs to access the instance, which increases security. We’ll
see an example of this later.

Now that we have some basic understanding out of the way, we can get started and build an application
in the cloud, running on AWS.

Creating an AWS account
As mentioned in the previous section, a VPC within AWS represents a high-level abstraction of your
overall network. All of the resources that we create will run inside a VPC. Therefore, we’ll need to
create a VPC first before we can create an EC2 instance and deploy Ubuntu.

Before we can create a VPC though, we’ll need an AWS account. Before this chapter, I typically advised
you to use whatever hardware you have available in order to create Ubuntu installations to work with
the platform. This time, we’re going to utilize an actual cloud provider, which comes at a cost. While
there are free components available for a limited time with a new account, it’s up to you, the reader,
to keep track of billing. We’ll discuss costs in greater detail later in this chapter. But as a general rule
of thumb for now, always use whatever the cheapest option is. If a free instance type is available,
go with that. Of course, if you’re intending to deploy actual resources for production use within an
organization, then you’ll want to choose whatever instance type is appropriate for the use case. For
our purposes, we’re just learning the platform for the first time, so be sure to go with the lowest-cost
resources available and delete everything when you’re done.

That last point is especially important – the free tier is not unlimited, and if you forget to delete some-
thing, you might receive a bill at some point. What I recommend is to keep a running list of everything
you create in AWS, so you have a list of things to delete if you don’t wish to continue using the platform.

Chapter 19 417

You should also remove any snapshots/storage volumes, or anything else that you end up creating.
Better yet, if you aren’t going to use the AWS account in production, you can simply delete the account
so that it doesn’t continue to bill you. If ever in doubt, be sure to consult the documentation for billing
within AWS itself.

Signing up for AWS
Now it’s time for us to create our own AWS account. In this section (and in each of the remaining sec-
tions of this chapter) I’ll walk you through each step when it comes to navigating AWS. It’s important
to keep in mind that the AWS Management Console that we’ll be navigating has a history of changing
quite often. In fact, the console has changed no fewer than twice since the previous edition of this
book was written, and that’s not even counting the fact that in the third edition, the interface changed
in the middle of writing the previous version of this chapter. The screenshots and walkthrough are
accurate as of the time this chapter has been written, but it’s always possible (and quite likely) that
the interface will be updated again at some point. That said, if the screenshots or layout have changed,
you should still be able to follow the instructions here since the verbiage generally doesn’t typically
change, just the layout. With that said, let’s get started.

To begin, navigate to https://aws.amazon.com and you should see an orange button in the upper-right
corner with the label Create an AWS Account. It’s possible that the layout of the page may change after
publication, but you should see a button to create a new account somewhere on the page:

Figure 19.1: The AWS main page

https://aws.amazon.com

Deploying Ubuntu in the Cloud418

When you click the button to create a new account, a form will appear asking you for basic informa-
tion. An example of some of the fields you may be asked for is shown in Figure 19.2, though the exact
information you may be asked for may vary. Fill out each field accordingly, then click Continue:

Figure 19.2: Signing up for a new AWS account

Chapter 19 419

After you click Continue, another screen will appear asking you to fill out additional fields, such as your
full name, company name, address, and so on. This process will also include asking you to provide
credit card details as well, so proceed through each screen and enter the required information. At the
end of the process, you’ll see a selection where you can choose your support plan:

Figure 19.3: Choosing a support plan while signing up for an AWS account

If you are asked to select a support plan during the process, choose the one that makes sense for your
use case. If you’re going to be using AWS to create production instances for your organization, the
Developer or Business plan may offer additional value to you. If you’re only going through the process
to learn AWS and work through the examples in this chapter, choose the Basic plan.

Deploying Ubuntu in the Cloud420

Once you’ve finished the process of creating your new account, it may take some time before your new
account is ready. When it is, you should receive an e-mail saying that it’s ready for use. After you do
receive that e-mail, you’ll be able to log in. To do so, navigate to https://aws.amazon.com and click
the Sign In to the Console button, which will bring you to another page where you can type in your
account login info:

Figure 19.4: Signing in as Root user

Here, you have a choice to log in as the root user or an IAM user. We haven’t created any IAM users yet,
so we only have a root user at this point. The root user is accessed by signing in with the same e-mail
address that you’ve provided during the sign-up process. Enter that e-mail address in the prompt, click
Next, then enter your password on the next screen.

https://aws.amazon.com

Chapter 19 421

If all goes well, you should be logged in and see the AWS Management Console:

Figure 19.5: The AWS Management Console main screen

Now that you have access to the management console, you can begin using AWS. Before we start cre-
ating cloud resources, we should implement some basic security to protect our account.

Implementing basic user security
Before we continue any further, there are some very important security best practices we should em-
ploy regarding the ability to authenticate to our AWS account. Although it’s very likely that our new
account was created as a test account for following along with examples in this chapter, we should
make it a habit to always protect our AWS account, regardless of how important it actually is.

We can begin with protecting the root account, as it’s a common target for hackers. Specifically, we
should enable two-factor authentication for this account. Doing so will make it much harder for an
outside threat to access it, since they would need access to your second factor in addition to your
password. Since we’re already logged in as the root user at this point, we can set this up immediately.

In the management console, you’ll see a search field near the top of the screen. If you already know
the name of the service you would like to configure, you can begin typing its name in the search field,
and if your query matches an available service, it will show it in the list. If you don’t know the name
of the service you’d like to use, you can click on Services in the top-left corner of the console, to see
a complete list of the services available.

Deploying Ubuntu in the Cloud422

For setting up second-factor authentication, we will access the IAM service. You can start typing IAM
into the search field, and it should show it as an available option. Go ahead and click on it:

Figure 19.6: Using search within the AWS Management Console to locate the IAM service

When the IAM dashboard appears, you may see a security alert that complains about the root user
not having Multi-Factor Authentication (MFA) enabled. Although enabling this feature is optional, I
recommend you enable it.

MFA is critical for ensuring the security of any account that is important to your organization, espe-
cially an account for a cloud computing provider such as AWS. MFA will enhance the security of the
account in terms of authentication, requiring an additional factor before a user will be able to access
the account. The root account is the most critical account to protect in AWS, since it has full access to
every available service. To enable MFA, click on the button that reads Add MFA (or similar verbiage
if the layout on this page changes):

Figure 19.7: IAM dashboard, with an alert that MFA is recommended to be set up

Chapter 19 423

Next, click on MFA to expand it (if it isn’t already), and then click on the Activate MFA button:

Figure 19.8: Setting up MFA (continued)

The next screen will give you a choice of which type of device to use to facilitate MFA. The default
(Virtual MFA device) is a good one to go with if you don’t have a physical hardware key, such as a
YubiKey. If you have no other preference, choose the Virtual MFA device option and click Continue:

Figure 19.9: Choosing a type of MFA device to set up

To set up your virtual MFA device, you’ll need to download a second-factor application to serve this
purpose. Google Authenticator is a popular choice here, but I recommend Authy instead. Both are
perfectly acceptable, but Authy also features a desktop app you can use, as well as the ability to recover
your account if your primary device is not accessible for any reason. Authy is compatible with Google
Authenticator, so you can typically use it with services that offer a Google Authenticator option. To
continue, reveal the QR code, scan it with your phone app, and then type in two subsequent values
generated by the app.

Deploying Ubuntu in the Cloud424

Finally, click Assign MFA to finalize the process:

Figure 19.10: Setting up the MFA device

Now that we have two-factor authentication enabled for our root account, we should stop using that
account immediately. This is actually a best practice when it comes to AWS; it’s recommended that
you create individual accounts for the individuals that will work on your AWS account, giving them
the permissions they need to perform the tasks they need to complete. We’ll discuss the principle of
least privilege in Chapter 21, Securing Your Server, but it doesn’t hurt to start thinking about the concept
now. For now, what we’ll do is create an administrator account for ourselves that we can use in place
of the root account. We can always use the new account to create additional users if we need to do so.

To create a new administrator account, we will again utilize the IAM console. Once there, you’ll see a
Users link on the left, and then you can click the blue Add users button to begin the process:

Figure 19.11: Setting up a new administrative user for AWS

Chapter 19 425

The next screen will have you type the desired username, as well as setting Access Type. For the us-
ername, you can name the user whatever you’d like. For Access Type, we’ll choose AWS Management
Console access. Click Next: Permissions to continue:

Figure 19.12: Setting up a new administrative user for AWS

Deploying Ubuntu in the Cloud426

Next, we will set up the appropriate permissions for our user. The third icon, labeled Attach existing
policies directly, is the first selection we’ll make here, and then below that we’ll place a mark next to
the check box for Administrative Access, and then we’ll click Next: Tags:

Figure 19.13: Setting up a new administrative user for AWS (continued)

We can skip the tags screen by leaving the fields blank and clicking Next: Review.

The next screen will provide us with an overview, and if everything appears to be correct here, we
can click Create user:

Figure 19.14: Setting up a new administrative user for AWS (continued)

Chapter 19 427

Finally, we’ll see a confirmation message that our user was created. If you chose to have a randomly
generated password during the process, you should also see a button there to retrieve it:

Figure 19.15: Setting up a new administrative user for AWS (continued)

You can now log in to the AWS Management Console with the new user and the password that was
provided. You will also need the account ID, which is visible within the URL on this screen (it’s the
number right after https://). To make it easier, you can click on the URL that’s shown in order to
have the account ID autofilled.

Going forward, I recommend that you use the new user we’ve created for managing the AWS account,
as it’s a good practice to not use the root account unless you absolutely have to. In addition, I recom-
mend you follow the procedure to set up MFA as we did earlier, but this time with the new user.

Choosing a region
As discussed earlier, a VPC within AWS is the high-level abstraction of your overall network. You can
have multiple VPCs, which is similar to the concept of managing several physical networks. In fact, we
already have VPCs created for us in our account, so we won’t need to create one. In the future, keep
in mind that creating additional VPCs is an option, should you ever need to have more than one. In
our account, we have a default VPC in each Region, so choosing which one to utilize comes down to
which region is most appropriate for our use.

For production use, you’ll want to create instances in AWS that are as close to your customer as you can
get. For example, let’s say that the customers that your organization markets to are primarily located
in the Eastern United States. There’s a region available within AWS that is available that’s labeled US
East, so that would be an obvious choice in that scenario. You’re not limited to regions within the USA
though; there are regions available all over the world, such as in Germany, China, and Canada (among
others). In a nutshell, you’ll want to create resources as close to your customers as possible. If you
don’t have a preference, you can choose to utilize whichever region is closer to you.

Deploying Ubuntu in the Cloud428

Although it’s beyond the scope of this book, AWS offers a service called CloudFront that acts as a Content
Delivery Network (CDN) that you can use to make your resources available in various edge locations
that users can be routed to in order to ensure they’re retrieving your content from a location closest
to where they are geographically. For organizations that produce media content, this is especially
valuable. If this is something that might benefit you, I recommend reading more about CloudFront.

In addition, there are often multiple Availability Zones within various regions, which allow you to
get even closer to your target audience. For example, when it comes to the US East region, there are
two availability zones inside it, one in Virginia as well as another in Ohio. Availability zones not only
give us the ability to get another step closer to our customers but also offer us additional options
for redundancy. For example, if one availability zone goes down for whatever reason, you can route
your customers to another. Availability zones have a specific naming syntax that consists of both the
name of the region as well as the availability zone within that region. Using the Eastern United States
as an example again, the two availability zones there are labeled us-east-1 for Virginia and us-east-2
for Ohio. Not all regions will have multiple availability zones, though. Canada currently only has one
region with one availability zone: ca-central-1.

In addition to availability zones, there are also local zones, which are intended to allow you to set
up resources even closer to your customers than availability zones are able to get. Local zones are a
great choice if your application is sensitive to network latency, such as running a server for an online
game. We won’t go over local zones in this book at all, because this is a very new offering from AWS,
and there are only two of them in existence as of the time this book is being prepared for publishing.
Amazon intends to add additional local zones in the future, so there may be more of them available by
the time you’re reading this. If your organization offers a service that is sensitive to network latency,
this may be a feature you’ll want to keep up to date on as they roll it out to more locations.

For now, the only consideration is which region will benefit your customers by being as close to them
as possible. When it comes to following along with the examples in this book though, choosing a region
closest to you geographically is a good idea.

Now that we’ve selected our region, how about we create an actual Ubuntu instance in the cloud?
That’s exactly what we’ll do in the next section.

Deploying Ubuntu as an AWS EC2 instance
With a great deal of discussion out of the way, it’s time to create an actual Ubuntu deployment in the
cloud. This will allow us to see the AWS service in action and give us some working experience with
the EC2 service. This requires two individual steps: the first to create a required IAM role and the
second to create our instance. Let’s first make sure we understand the requirements of the IAM role,
then we’ll set up the role and then create our new instance.

Setting up an IAM role for Session Manager
Session Manager is a service within AWS that we can use to access a command prompt for our instance.
It’s actually part of Systems Manager and not its own service. If you want to access Session Manager,
you will need to search for Systems Manager, and you’ll find Session Manager as a service underneath
that. You’ll see this shortly.

Chapter 19 429

Why should we use Session Manager? Just like with any other Linux server, we can still use OpenSSH
to connect to the EC2 instance we’ll be creating, just as we have many times while working with non-
AWS instances throughout this book.

There’s nothing wrong with using OpenSSH; with the right settings it can be a very secure option. In
fact, we will explore methods of better securing it in Chapter 21, Securing Your Server. With AWS, we
can use Session Manager as an alternative to OpenSSH, and it’s a worthwhile alternative to learn that
offers additional security in that its backend security is not something we have to manage ourselves.
In addition, we can control access to it through the AWS console as well.

By default, Session Manager is not accessible at all. It requires a specific package to be installed within
Ubuntu Server for it to work, and it also requires specific permissions to be enabled. The required
package for Ubuntu is preinstalled by default, so the first requirement will be automatically taken
care of for us immediately when we create our instance.

For the second requirement of adding permissions, we’ll need to create an IAM role to allow the EC2
instance we’re about to create to communicate with the Session Manager service. When I mentioned
earlier that Session Manager isn’t accessible by default, this is why—it’s missing the permissions need-
ed until we add them. To add the required permissions, we’ll access the IAM service within the AWS
console, the very same one that we used earlier to create a user account for ourselves. IAM itself has
many tricks up its sleeves, more than just simply allowing us to create users. It also allows us to create
IAM roles, which give us the ability to add permissions to entire objects. For example, we can create
a role with the permissions that are required, and then we can attach that role to any EC2 instance to
immediately give it the ability to be connected to by Session Manager.

Let’s get started and set up the required IAM role for Session Manager. Return to the IAM section of
the AWS console that we’ve worked with a few times now, and we’ll create the required role.

In the IAM menu on the left side of the window, click on Roles, and then click on the blue button
labeled Create role:

Figure 19.16: Creating an IAM role to enable Session Manager

Deploying Ubuntu in the Cloud430

On the next screen, make sure AWS service is selected, and in the menu below that, choose EC2 as
the service. Click Next to continue along:

Figure 19.17: Creating an IAM role to enable Session Manager (continued)

Next, we are able to attach policies to our role. In the search field that appears, we can type a keyword
to narrow down the list, and then click on a checkbox next to a policy we wish to attach to our role.
A full overview of all of the built-in policies and what they’re for is beyond our scope, but as a short
summary, each service within AWS has pre-built policies that can be attached to a role, which allows
access to various features. Specific to our needs, we will add the AmazonSSMFullAccess policy to the
role we’re creating.

Chapter 19 431

The purpose of this will become clearer when we create our EC2 instance, so for now, click Next to
continue on:

Figure 19.18: Attaching the AmazonSSMFullAccess policy to our role

The next screen that will appear will give us the ability to add one or more tags. We’ll skip this for now,
but you can feel free to add any tags you’d like here. Tags allow you to attach information to a resource
and aren’t limited to IAM roles. You can add any descriptive information you feel is pertinent, if you
wish. Tags are simply key: value pairs, so there’s no specific naming scheme to follow here. Add tags
if you wish to do so, and when you’re finished with this screen click Next: Review.

Deploying Ubuntu in the Cloud432

The final screen will give us a review of the settings we’ve chosen so far, as well as an option to name
the role, and add a description if we wish to do so. Although it’s optional, I recommend giving the role
a name, to make it easier to identify later. When you’re finished, click Create role:

Figure 19.19: Adding a name and description to our role

When it comes to setting up our IAM role, we’re all set—the role has been created and we can go ahead
and use it. Next, it’s time to create our Ubuntu instance.

Creating an Ubuntu Server instance in AWS
Now it’s time to see our work come together and create our Ubuntu instance. In the AWS console, we
should first access the EC2 service to get started. You can easily find any service by typing its name
into the search box within the console; so if you start typing EC2 into that field, you should see EC2
on the list. After you click on that, click on Instances on the left side of the screen. After doing that,
you’ll see a screen with a button labeled Launch instances:

Figure 19.20: The main window of the EC2 service

Chapter 19 433

Normally, the Instances section of the EC2 console will show us a list of all of our server instances, but
unless you’ve read ahead, we don’t have any yet so the window is blank. When you click on Launch
instances, you’ll see various operating systems in the list. But for our purposes, Ubuntu is shown in
the Quick Start section, so we’ll select that:

Figure 19.21: The Ubuntu option for EC2

Deploying Ubuntu in the Cloud434

Further down, make sure that t2.micro is selected, which should show the verbiage Free tier eligible
alongside it. That’s the instance type that we’ll want to use:

Figure 19.22: Choosing an instance type

On the Choose an Instance Type screen, there will be quite a few instance types from which to choose.
I selected the t2.micro instance type, and I recommend you do the same. It’s eligible for the free tier,
which is a special tier you’ll have access to within the first 12 months of the age of the account. You
most likely wouldn’t choose this instance type for a production server, as it will be quite slow—it only
has 1 CPU and 1 GiB of memory. And it’s a burstable instance type, which means the speed fluctuates
based on usage. It’s able to burst to take care of busy workloads, but its ability to do so depends on
CPU credits that it earns in a particular time. A full explanation is beyond the scope of this chapter,
but if you’re going to use AWS in production, it’s a good idea to read about the various instance types
available. Although you don’t see it in the screenshot, you should also see the cost on this page as well.
But again, we’ll utilize the free tier for now.

Further down the page, you’ll generate a new key pair, assuming you don’t have one already. This
will be used for connecting to the instance via SSH. To generate a new key, click Create new key pair:

Figure 19.23: Key pair settings during instance creation

Chapter 19 435

The next screen that appears will allow us to configure the key, such as setting encryption options.
For our purposes, we can leave the defaults as is after giving the key a name, and then we can click
Create key pair:

Figure 19.24: Customizing our SSH key

The previous step will trigger your browser to download the SSH key that you’ve generated. Be sure
to keep it in a safe place. You can use the key you’ve just downloaded to connect to your instance via
OpenSSH with a command similar to the following:

ssh -i /path/to/key.pem ubuntu@<Instance Public IP>

Deploying Ubuntu in the Cloud436

For me, if I add the path of my key as well as the public IP address listed for my instance, the com-
mand becomes this:

ssh -i /home/jay/downloads/jay_ssh.pem ubuntu@54.81.234.225

From here, managing the server is just a matter of interacting with its shell and entering commands.

But anyway, I’m getting ahead of myself. After you safeguard your key, we can move on to the next
section by scrolling down. Network settings are what we’ll work on next:

Figure 19.25: Setting options for our new EC2 instance

The first consideration on this screen is where we’ll allow OpenSSH connections from. The default
option, 0.0.0.0/0, allows connections from anywhere (and is even labeled as such). As we’ll discuss
in Chapter 21, Securing Your Server, allowing SSH connections publicly is a bad idea, since outside
threat actors might try to use that as a means to access the server. With the instance we’re creating
right now, we can make a case for allowing connections from anywhere, since it’s a test instance for
the purposes of learning (and we’ll be deleting the instance before the close of the chapter). However,
it might be a better idea to get into the habit of restricting access to OpenSSH to specific IP addresses.
To do that, you can choose the option My IP from the dropdown, which will restrict access to OpenSSH
to your public IP address.

Chapter 19 437

If you do choose to restrict access, keep in mind that unless your public IP is static, it can change at
any time. When it does, you’ll lose access to your EC2 instances via OpenSSH. You can regain access
by updating the security group for the instance to include your new IP address, but that inconvenience
is a small price to pay for added security benefit.

Continuing in that same section, we have an option to allow traffic in addition to OpenSSH:

Figure 19.26: Network settings while creating an EC2 instance on AWS

The other options, HTTPS and HTTP respectively, are essential if you’re planning on setting up a
website on the instance. It’s very common to restrict OpenSSH on a web server, while at the same time
allowing full access to ports 80 and 443 from the public internet. The reason for this is, OpenSSH
gives you access to manage the server, so we definitely wouldn’t want that open to the public. When it
comes to a website, we’ll most likely want the general public to be able to access it, which is why we
allow those options. You should only check the latter two boxes in the situation where you’re actually
planning on setting up a web server. For our needs, we should allow these boxes, since we will be
installing Apache later.

Deploying Ubuntu in the Cloud438

Next, we’ll configure the storage for our instance:

Figure 19.27: Storage options while creating an EC2 instance

By default, your EC2 instance will be set up with 8 GiB of storage space. As indicated in the highlighted
message on the screen, you can get up to 30 GB of EBS storage space as part of the free tier, if you’re
eligible. For that reason, you can consider setting this higher. You can also add additional storage
volumes to the instance, which might help if you wanted to segregate storage between block storage
devices. We shouldn’t need that for our use case in this chapter.

Below that, the final section on this screen allows you to configure Advanced details. There are quite
a few extra options here, but we’ll be ignoring all but one of them. At the very bottom, there’s a large
text box labeled User data. This is the only option within the advanced details section we’ll change:

Figure 19.28: Adding user data for our EC2 instance

Chapter 19 439

The User data section is often overlooked, but it’s incredibly useful. But what exactly is this for, and what
does it do? If I didn’t know any better myself, I’d probably assume that this is where you’d add infor-
mation that pertains to your users. But that’s not what it’s for. What User data allows you to do is add
a series of commands, or even a full script, that you’d like to have executed as the instance is created.

Already, you can think of any command you might run, or configuration you might tweak, any time
you set up a server. Instead of manually executing setup commands after the instance is online, you
can simplify this quite a bit and have much of that done automatically before you even log in for the
first time.

In my case, I’ve added the following code to the User data field:

#!/bin/bash
apt update
apt dist-upgrade -y
apt install -y apache2

If you think the code that I’ve added resembles a Bash script, then you’re correct—that’s exactly what
it is. I added four lines of Bash statements to the User data field, to have some commands run auto-
matically. The code should be relatively straightforward: I have it set up to update the repository index,
then perform a full system upgrade.

This is important; we always want our servers to start with the latest patches available. As a proof of
concept, I added a statement to install Apache. Notice that I included the -y option to all of the apt
commands. This automatically responds “yes” to any question apt may ask, since we don’t have a
display hooked up to this server and are unable to answer questions ourselves. Without that option,
the user data will fail to apply.

Anyway, the moment of truth is here – it’s time to launch our instance, and we can do so by clicking
the Launch instance button near the bottom of the page. Assuming we didn’t forget anything along
the way, our new Ubuntu Server cloud instance is moments away from existing!

At this point, we should see the new instance in the list of EC2 instances in our account, and it will
take some time for it to be ready for use. When the status indicates that the instance is Running, then
that means it’s ready for us to connect to:

Figure 19.29: Checking the status of our EC2 instance

Deploying Ubuntu in the Cloud440

In order to set up a connection so we can manage the instance, we’ll need to change the IAM role for
the instance. If you recall, we created an IAM role earlier, and this is where we’ll attach that role to
our new instance. This will ensure that the settings within the role are applied to the instance, which
in turn will give us access to Session Manager for connecting to that instance. To change the IAM role,
we’ll check the box to the left of the instance, then click on Actions at the top of the screen. In the
menu that opens, click on Security, and then Modify IAM role:

Figure 19.30: Navigating to the IAM role settings for an EC2 instance

The screen that follows is where we’ll change the IAM role to the one we created earlier:

Figure 19.31: Changing the IAM role of an instance

Chapter 19 441

After you click Update IAM role, you’ll be brought back to the list of current EC2 instances. If you click
on the blue instance ID text near the name of the instance, you’ll be taken to a screen where you can
customize additional options for the instance:

Figure 19.32: Additional EC2 instance settings

Among the various items on the page, of special interest to us is the Connect button. If we click on
that, we’ll begin the process of setting up a remote connection we can use to manage the instance. On
the screen that appears, click on the Session Manager tab:

Figure 19.33: Preparing a session to connect to an instance

Deploying Ubuntu in the Cloud442

Once you click the Connect button, a new browser window will appear that you can use to issue
commands to your instance:

Figure 19.34: An instance session open within a web browser

In Figure 19.34, I entered the following command in order to display details for the version of Ubuntu
that was deployed in the instance:

cat /etc/os-release

The /etc/os-release file is included with all Ubuntu installations, and as you can see from the output,
it contains some information regarding the version of Ubuntu we’re running. That command was
entered directly into the Session Manager window, to show that the connection is actually working
and we can now configure the instance right from within our web browser!

If you recall, we added User Data earlier, and that included a command to install Apache. If you enter
the public IP address of your EC2 instance into a web browser, you should see the default Apache
web page:

Chapter 19 443

Figure 19.35: The Apache default web page running on an EC2 instance

Congratulations! You’ve successfully deployed Ubuntu Server to the cloud, and now have an actual
web server running on it. That’s all there is to it. Using Session Manager is also simple; all you need
to do to customize the server further is right-click on it, click Connect, and you can then continue to
build the instance. That’s awesome!

What’s not so awesome, though, is when something happens to your server and you have to start over
and rebuild it from scratch. In the next section, we’re going to explore the process of creating an image
of the server that we can utilize to deploy customized versions of Ubuntu.

Deploying Ubuntu in the Cloud444

Creating and deploying Ubuntu AMIs
Just about every cloud platform I know of includes some sort of feature that can be used to create
images of the instance’s hard disk. An image can be used to create copies of the original server, as
well as acting as a starting point so if the server needs to be rebuilt, we won’t have to start over from
scratch. In AWS, images are known as Amazon Machine Images (AMIs). For all intents and purpos-
es, there’s nothing very unique about AMIs; if you’ve worked with disk images in the past, it’s the
same thing. When it comes to what to include in an AMI, you can (and should) use your imagination
here—anything you find yourself manually setting up or configuring while rolling out a new server
is a candidate to be included in an image, and the more customizations you include inside the image,
the more time it will save you later.

Let’s see this in action and create an image of the server we’ve just set up. We should consider shut-
ting down our server first, although this isn’t required. Taking an AMI of a server that is shut down is
preferred over doing the same on a server that is running. When the server is shut down, nothing is
writing to its disk, so we don’t have to worry about corruption if we’re capturing an AMI in the middle
of a critical write operation. The likelihood of running into an issue while creating an AMI of a running
server is very small, but I recommend shutting down the server if you can just to be on the safe side.

In the EC2 console of AWS, you can right-click on the instance to access Session Manager, and then
you can simply power it off from the command prompt:

sudo poweroff

In AWS, it can take a minute or two for an instance to power down. You can refresh the page after
some time, and the status should change to Stopped:

Figure 19.36: Checking the status of an EC2 instance

Once the instance has stopped, you can right-click on it to begin the process of creating an AMI. Hover
over Image and templates and then click Create image:

Chapter 19 445

Figure 19.37: The Apache default web page running on an EC2 instance

Next, we can enter some details about our AMI. Give it a name and a description. This information
will help others you work with understand what the image is for, and it can also help you remember
why you’ve created the image later on down the road. There are other options on this page, but we
can leave the rest as is. A name and description should be good enough for now. Once you’re finished,
click Create image to continue:

Figure 19.38: Creating a new AMI

Deploying Ubuntu in the Cloud446

Believe it or not, that’s all there is to it. The process of creating an AMI is very straightforward, with
just a few steps. You should now see a confirmation screen, letting you know the image is in the pro-
cess of being created:

Figure 19.39: Confirmation while creating a new AMI

If you click on the underlined text that contains the AMI ID, you’ll be directed to the AMI section of
the EC2 console, where it will show your image on the list:

Figure 19.40: Our newly created AMI, available for use

In the AMI section of the EC2 console, you should see the list narrowed down to just the AMI we cre-
ated just now. We only have one AMI anyway, unless you created multiple AMIs for practice. At the
end, the Status column should read available if the AMI is ready for use. If not, give it some time, and
refresh the page later. Sometimes it can take a few minutes. But with regard to creating an AMI, that’s it!

Now that we have an AMI, how do we go about using it? Well, that’s even easier actually. Simply right-
click on the AMI on the list and click Launch. You’ll see the same launch settings we worked through
earlier when we originally created the instance, but this time, we’re using our own AMI instead of the
one provided to us. And now, we have our own custom AMI of Ubuntu with Apache built in that we
can use to simplify our process a bit. Keep in mind, though, that our original instance is still stopped.
You can return to your list of EC2 instances and start it by right-clicking on it, then clicking Start, but
you don’t have to; we’re going to work through a fun automation example shortly.

In the next section, we’re going to take a look at the concept of Auto Scaling.

Automatically scaling Ubuntu EC2 deployments with
Auto Scaling
If we maintain one or more servers for our organization, it’s hard to predict sometimes what the demand
will be on that server. In the case of a popular news site, some articles may be more popular than others,
and if something goes viral online, then requests to our site can increase by orders of magnitude in a
short period of time. In the past, keeping up with customer demand was a very tedious process, one
that may result in having to purchase an entirely new server with more powerful hardware. With our
instance being in the cloud, we have more flexibility and can automate the process of bringing more
servers online. And that’s exactly what we’re going to work on in this section.

Chapter 19 447

Before we get started, keep in mind that we don’t actually have a popular server in AWS; we only have
a simple test server that’s currently running Apache. We can simulate things to a point, but Auto
Scaling is one of those things that requires a bit of practice to fully utilize. We will definitely get a
working example here, though.

But another important thing to keep in mind is that the more instances we run, the higher the potential
cost. We’ll explore how to keep costs down in the next section, but as a general rule of thumb, delete
whatever you’re not using. As you’ve gone through examples in this chapter, we’ve set up our own EC2
instance. This is great: we were able to practice some concepts around AWS and put that to use. But if
we leave something running that we don’t need, we can have a surprise bill. It’s a good idea to write
yourself a reminder to delete everything in your test AWS account when we’re done with the chapter,
so you won’t have to worry about that.

Continuing, one of the requirements of Auto Scaling is that we have an AMI ready that it will use to
bring additional servers online. Since we’ve worked through creating an AMI in the previous section,
we already have that requirement met. If you haven’t already worked through the previous section,
make sure you do so before we continue. The process of setting up Auto Scaling involves a handful of
steps, and we’ll work through each in their own subsection within this chapter.

Creating a launch template
Earlier in the chapter, we walked through the process of creating a new EC2 instance. We chose the
option to launch an instance, and then configured various settings within multiple screens we worked
through. We chose Ubuntu as our platform, added user data, and set an IAM role (among other things).
What a launch template does is allow us to automate these choices. A launch template gives us the
ability to automate the entire launch process.

On the left-hand menu of the EC2 console, there will be a link titled Launch Templates. Click on it.
Once you do, you can click on the orange button labeled Create launch template. You’ll then see a form
you’ll need to fill out, where you select all the defaults for the launch template. There’s no screenshot
on this page, because it’s quite long and won’t fit on one page. Instead, I’ll include the relevant options
below, with a short description and a recommendation regarding what to set the option to:

•	 Launch template name: This is simply a name for your launch template; set it to the name you
feel is most appropriate. Note that this cannot contain spaces.

•	 Template version description: For the description, you can add some details that you think
are relevant to the purpose of the launch template.

•	 Amazon Machine Image (AMI): Choose the AMI that you created in the previous section. You
should see it listed if you click on the My AMIs tab, and ensure Owned by me is selected. This
will narrow down the list of AMIs quite a bit, and since we’ve only created one AMI, it should
be easy to find.

•	 Key pair (login): When you created the EC2 instance earlier, it had you create an OpenSSH key
pair. If you drop down this list, that same key pair should be available. Choose that same key.

•	 Instance type: If you recall, we chose t2.micro as the instance type earlier. That’s a good se-
lection for this field as well, since t2.micro is eligible for the free tier.

Deploying Ubuntu in the Cloud448

•	 Security groups: Earlier, when we added a security group, we set it up to allow OpenSSH and
Apache. Feel free to choose that same security group for this.

•	 IAM instance profile: This option is a bit hidden, but you should see it as soon as you expand
Advanced details near the bottom. Although this is optional, it’s a good idea to select the IAM
profile we created earlier, to ensure we have access to Session Manager for each instance the
launch template creates.

With all of those details set, click Create Launch Template near the bottom of this screen. Now we
have our launch template created and configured, and we can use it as part of the Auto Scaling feature
we’re in the process of building.

Creating an Auto Scaling group
Our next requirement is to create an Auto Scaling group, which will be a shorter process than setting
up the launch template. An Auto Scaling group is a logical group of instances that are related to the
overall application. We will add our launch template to this group and use it to customize requirements
such as how many instances to have online.

Back in the EC2 dashboard, you’ll find an option for creating Auto Scaling groups in the menu on the
left side of the screen, closer to the bottom. Once there, give it a name:

Figure 19.41: Naming the Auto Scaling group

Chapter 19 449

Further down on that same screen, we will choose the launch template we created earlier. Go ahead
and do so, and then click Next:

Figure 19.42: Selecting a launch template for our new Auto Scaling group

Deploying Ubuntu in the Cloud450

On the next screen, several additional sections worth of options will appear. The first of which will
have you configure some defaults around networking. For the VPC, you can leave that as is, and for
the availability zone, you can simply choose the first on the list:

Figure 19.43: Creating an Auto Scaling group (continued)

Continuing, the next section will ask us about our preference around instance types. On my end, I
chose the Manually add instance types option, and then t2.nano as the instance type:

Chapter 19 451

Figure 19.44: Creating an Auto Scaling group (continued)

Once you’re finished choosing your instance type(s), there’s nothing left for us to do on this particular
page, so click Next to continue. This will take you to another section, this time asking you if you want
to create a load balancer. In the first section of this screen, choose to Attach to a new load balancer:

Figure 19.45: Creating an Auto Scaling group (continued)

Deploying Ubuntu in the Cloud452

A load balancer allows us to route clients between multiple servers, so the end-users only see one
endpoint, but behind the load balancer we can have more than one server available to serve client
connections. This is going to be key to setting up our auto-scaled test site, so we’ll definitely want to
configure this.

After choosing to create a new load balancer, we can configure additional options in the next section.
Most of these options we’ll leave at their defaults, but there are a few things we’ll want to pay attention to:

•	 Load balancer type: By default, Application Load Balancer should be selected. If it isn’t, then
make sure that’s the highlighted option before continuing.

•	 Load balancer name: This is simply a name for your load balancer; set it to the name you feel
is most appropriate. Note that this field is somewhat limited on what types of characters it will
accept, so it’s best to keep the name simple.

•	 Availability Zones and subnets: We’ll need at least two availability zones for the load balancer,
and one will be chosen for you already. The quickest way through this section is to enable the
next availability zone in the list.

There are other options on this screen, but the next thing we’ll be doing is creating a target group,
which is directly underneath the availability zone options. There, we’ll choose to create a target group:

Figure 19.46: Creating an Auto Scaling group (continued)

A target group is a logical grouping of EC2 instances that serve a common goal. A load balancer will
send traffic to a target group, and instances within that group will answer the request. If an instance
is not a member of a target group, then it won’t be a part of our application. It’s not uncommon for
an organization to have more than one app, and as a result, several target groups. After you choose
to create a target group, you can accept the default name if you wish, and then we should be finished
with configuring our auto-scaling group. Click Next to continue, which will bring us to a section where
we can configure our scaling policy:

Chapter 19 453

Figure 19.47: Creating an Auto Scaling group (continued)

This is where the magic happens: we can choose the minimum number of instances to have running
at any one time and the maximum number of instances we will allow the application to scale up to.
We can leave each field at 1 for now.

That should be about all we’ll need to configure for our auto scaling group. You can click Skip to review
to take a shortcut that will take you to the final screen of the process, which will show you an overview
of your selections. If you’re satisfied with the settings that are shown, you can finalize the process by
clicking Create Auto Scaling group.

At this point, our Auto Scaling group is created, and we should have everything ready to go. At first,
we’ll have 0 instances within this group, so we’ll see the current number of instances shown as 0.

After it finishes updating capacity, it will automatically spin up a new EC2 instance in order to meet
our requirement of always having one instance online. If we check our list of EC2 instances, we should
have a new one on the list now:

Figure 19.48: A new instance was created as part of our Auto Scaling configuration

Deploying Ubuntu in the Cloud454

As you can see in the screenshot, the original EC2 instance has a state of Stopped. We stopped it earlier
so that we could create an AMI of that instance. In my case, I never started that instance again after
creating the AMI, so it’s completely stopped. The Auto Scaling configuration went ahead and created
a new instance, because its requirement of having at least one instance running was not met.

Before we implement the final component we need for everything to function properly, let’s take a
moment to understand the value that we already have in place. If we were to increase the number of
desired instances within the Auto Scaling group, then it would immediately spin up a new instance for
us. Although advanced usage is more appropriate for a book that’s dedicated to AWS, we can set this
up to automatically happen when the CPU of our instance gets to a certain point, which can trigger
Auto Scaling to bring another one online.

With just a single instance, we don’t have Auto Scaling in play yet, but we can easily enable that. An-
other benefit that we get automatically is auto healing, and we have that benefit even with a single
instance. If something were to happen to our only running instance, Auto Scaling will bring a new
one online to replace it automatically.

In this situation, the website will be down for several minutes while the new instance is being cre-
ated, but a bit of downtime is certainly better than having to manually replace the server ourselves.
If we set the desired instances to a number higher than 1, a user will not notice anything if one of
the servers goes down, the other will take care of the load while the new one comes up. These are
amazing benefits to be able to take advantage of and will give us additional peace of mind right away.
To test this yourself, feel free to delete the running EC2 instance by right-clicking it and then clicking
Terminate. The instance should then get terminated, and a new one should appear within several
minutes to replace it.

Since we have a load balancer in use, this changes the way that we’ll access the application that’s
running on our instance(s), which in this case is Apache (we had Apache installed when we built our
AMI, so every instance will automatically have Apache set up). Normally, we can access the application
by navigating to the public IP address of the instance. We can still do this, actually – and the same
is true for other instances within our load balancer setup as well. But in order to benefit from the
overall solution we’ve built, we should instead access the application from the DNS name of the load
balancer. This will ensure that our request is routed through the load balancer, rather than directly
to a specific server. If you navigate to the Load balancers section of the management console, you
should see the DNS name there. Going forward, the application or services you run on your instances
should be served by having users access it via that DNS name.

Congratulations! At this point, you’ve created a complete load-balanced solution in AWS that will
automatically heal from failures. Feel free to experiment a bit more, and then when you’re finished,
consider removing the test components we’ve created in this chapter to avoid a cost later on.

Speaking of cost, in the next section, we’ll talk a bit further about how to manage costs and keep our
bills under control.

Chapter 19 455

Keeping costs down: understanding how to save money
and make cost-effective decisions
As you just saw, there were many components and configurations we had to implement in order to
build a load-balanced solution in AWS. As we grow our AWS infrastructure and implement more solu-
tions, we should also keep an eye on our bill. Although we can utilize the free tier for now, production
applications will likely need more powerful instances than what the free tier will provide, and the
free tier itself won’t last forever. Not only that, but we should also know how to check how our bill is
trending to make sure we don’t accidentally implement something that is expensive or waste money
by running something we no longer need.

In this section, we’ll explore some concepts around billing. Although it’s beyond the scope of this
chapter to do a complete deep dive into the world of billing, the subsections that follow will provide
you with essential advice to help prevent unexpected charges.

Viewing billing information
Within AWS, the billing section is its own service along with others, such as EC2 and S3. You can find
the Billing area from the service list. Once there, you’ll be shown the Billing & Cost Management
Dashboard, which will show you your current expenses and allow you to see current and past billing
information:

Figure 19.49: Viewing the Billing & Cost Management Dashboard

Since the account I’m working with currently was just created a week or so ago, and I’m only using
instances in the free tier, I have no costs currently. But if I did incur charges, I’d see the current bal-
ance on the main page of the dashboard. In addition, I’ll receive the same information in a monthly
statement that is sent to the primary email account.

However, I don’t recommend waiting for the bill to arrive before checking your totals. To effectively
manage billing, you should check this dashboard manually, which might enable you to catch an error
before the end of the month, which might save you money. The links on the left will give you additional
billing information, as well as providing a way of accessing previous bills.

Deploying Ubuntu in the Cloud456

Adding a billing alert
In this section, I’m going to give you some high-level tips regarding some of the things you can do in
order to help keep your AWS bill down.

In the previous section, I recommended that you check the bill regularly instead of only when the
monthly invoice arrives. While that is good advice (if I do say so myself), the reality is that server ad-
ministrators like us are busy and may not remember to check the bill on a regular basis. This is why
we typically set up system alerts to notify us when our servers are encountering an issue. Similarly,
we can actually set up an alert inside our AWS account that can notify us if our bill gets too high. In
fact, even though the AWS account we’ve been working with was likely only created as a test account,
it’s especially important that we add a billing alert so we can be alerted if any of our experiments were
misconfigured in such a way that we’re incurring costs we didn’t intend to.

In the Further reading section at the end of the chapter, I have included a link to AWS documentation
that details how to set up billing alerts, and I definitely recommend you enable them. If you’re using
an AWS account for your organization to run actual production servers, it’s a good idea to enable
billing alerts there as well. In fact, be sure to create billing alerts in every AWS account you manage.
Another important element to consider is removing backups that aren’t needed anymore, which can
also lower costs.

Removing unneeded backups
This may seem like a no-brainer, but you’d be surprised—every organization I’ve ever worked for or
consulted with in regard to AWS has run into an issue where backups get out of control and gener-
ate large costs. My personal record for witnessing a waste of money in this manner is one company
that had over 23,000 unnecessary snapshots in their account, sitting around for over 5 years. I don’t
remember the exact dollar amount, but this error cost them thousands of dollars a month for years!

Backups themselves are extremely important though, and the previous example might’ve been under-
standable if the organization had legal requirements that forced them to retain all backups for a specific
period (such as 5 years). And backups, as you well know by now, are essential if the organization runs
into some sort of issue and needs to restore something from the past. But the general rule of thumb
here is to ensure that when the day comes to add an automatic backup feature, you also implement
(and regularly test) an automatic cleanup procedure as well.

Running EC2 instances only when they’re needed
Many organizations do business around the clock and all year round, while others conduct business
only during daytime business hours. While it might not be immediately apparent why this matters,
consider the fact that you don’t get charged for an EC2 instance while it’s powered off. You do get
charged for things like storage regardless of its state, but you aren’t charged for the instance itself if
it is not running. If your organization has a server that is only used during certain hours, consider
stopping the instance outside of that time period and then starting it back up when it’s needed.

Chapter 19 457

There’s additional functionality in AWS that allows you to automatically schedule an instance to run
only during certain hours, so there are ways to ensure your infrastructure is available when it’s needed.
Make sure you keep this in mind as you navigate AWS; if you’re creating a new server, is it going to
be necessary to make it run 24/7, or is it only necessary to run it at certain times? You’d be surprised
how much money this may save you.

Stopping or terminating unneeded EC2 instances
Similar to the advice in the previous section about having instances run only when necessary, consider
deleting instances completely if they’re not needed at all. Unless you’re utilizing a very specific type
of instance, you won’t be billed for an EC2 instance that doesn’t exist. Make a habit of deleting things
when you’re done with them. If you think you may need a server again in the future but you’re not
sure, consider creating an AMI of the server, and then removing it. Although the AMI itself will have
a cost, it’s going to be less than running an actual server.

This advice isn’t exclusive to EC2 instances; other services within AWS will also cause you to incur
costs if you don’t clean them up. Make sure to keep an eye on other components and services that
charge by usage, such as RDS, S3, EBS volumes, and so on.

So, there you have it—with some basic advice, you should be able to keep your billing under control.
And even if you make a mistake, as long as you’ve configured billing alerts, you should be notified and
be able to correct the problem quickly. I can understand if some of the billing advice was overwhelm-
ing, but you’ll get used to it. AWS has a lot of components that can make up a bill, but as long as you
set up alerts and delete items you’re not using, you shouldn’t have any problems.

We’ve gone over quite a bit in this chapter, but where should you go from here? In the next section,
I’ll provide some advice for continuing your learning and taking your AWS skills to the next level.

Taking the cloud further: additional resources to grow
your knowledge
AWS is a huge service, and we haven’t even scratched the surface of the platform in this chapter. We’ve
just created a simple load-balanced application in an earlier section, and we’ll even learn how to au-
tomate creating cloud resources in the next chapter. But if you’ve found this chapter fun and want to
work with AWS more and enhance your skills, I thought I’d provide some additional advice that will
hopefully help you do that.

Online training and labs
There is quite a bit in the way of online resources to expand your knowledge. Some of these resourc-
es are free, such as a section of the AWS website that provides free hands-on training: https://aws.
amazon.com/training/digital/

While you may already be aware of the value of YouTube when it comes to training videos, it’s a great
source of knowledge. (And you may have even stumbled across my YouTube channel, over at Learn
Linux TV.)

https://aws.amazon.com/training/digital/
https://aws.amazon.com/training/digital/

Deploying Ubuntu in the Cloud458

There are many videos on YouTube that can provide training, but that’s not the only source of video
content; Packt Publishing features video training courses as well, in addition to Udemy, which also
has some great content.

Overall, there’s no shortage of training materials available, but I’d recommend starting with the free
training provided by AWS that I’ve mentioned above, as well as the additional training content that
Amazon makes available at https://aws.training.

Certification
While it will take a bit of work, achieving one or more certifications in AWS will lead you down a path
where you’ll learn the platform in much greater detail. In addition, individuals with AWS certifications
are in high demand in the IT industry, so achieving certification is a good idea all around. I recommend
looking into the AWS Certified Cloud Practitioner credential, which is a more entry-level certification
that is approachable to those just starting out.

After you grow your expertise, you may want to consider the AWS Certified Sysops Administrator
credential, which is more challenging but will boost your knowledge even further.

Keep experimenting and learning
Even if you don’t decide to achieve a certification, keep experimenting with the platform. Getting your
hands on the technology and making use of it on a regular basis is usually the best way to learn and
keep your skills sharp. Try to create additional types of infrastructure, build and rebuild test instances,
and above all, have fun. For many people, there’s no greater way to learn something than to get your
hands dirty and experience it. I also recommend you follow any blogs around cloud computing and
related technologies as well.

AWS documentation
The documentation provided by AWS is well written and very detailed. You can learn everything you
need to know from the AWS documentation alone. The documentation pages are above and beyond
the typical level of quality you would expect from such a large service; Amazon takes the AWS docu-
mentation seriously. The documentation pages are available here: https://docs.aws.amazon.com/
index.html.

New resources for learning about AWS are being created on a regular basis, so keep your eyes open for
new books, training videos, and more as you study the platform. I think you’ll have a lot of fun taking
your skills to the next level and exploring everything the AWS platform has to offer.

Summary
This chapter has been one of the most involved in the entire book so far, and you’ve accomplished a
lot. During the course of this chapter, you learned about AWS, set up your own cloud server, set up
Auto Scaling to ensure that your server is able to automatically heal from disasters, and even set up a
load balancer to enable routing between multiple instances. Make sure you take some time to let all
this knowledge sink in before continuing on, and I also recommend you spend some additional time
with AWS before moving on to the next chapter.

https://aws.training
https://docs.aws.amazon.com/index.html
https://docs.aws.amazon.com/index.html

Chapter 19 459

Speaking of the next chapter, we’re going to work with AWS again, but this time, we’re going to focus
on learning Terraform, which is an awesome tool that will enable us to automate the building of our
cloud resources from the ground up. It’s going to be a lot of fun.

Further reading
•	 Amazon Elastic Compute Cloud documentation: https://learnlinux.link/ec2-docs
•	 Security groups for your VPC: https://learnlinux.link/vpc-docs
•	 Auto Scaling documentation: https://learnlinux.link/as-docs
•	 Amazon Machine Images (AMIs) : https://learnlinux.link/ami-docs
•	 Amazon Elastic Kubernetes Service documentation: https://learnlinux.link/eks-docs
•	 AWS Billing Alert documentation: https://learnlinux.link/cw-docs

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://learnlinux.link/ec2-docs
https://learnlinux.link/vpc-docs
https://learnlinux.link/as-docs
https://learnlinux.link/ami-docs
https://learnlinux.link/eks-docs
https://learnlinux.link/cw-docs
https://packt.link/LWaZ0

20
Automating Cloud Deployments
with Terraform

The previous chapter was especially fun: we were able to deploy Ubuntu in the cloud, utilizing Amazon
Web Services (AWS). Deploying infrastructure in the cloud is very powerful and allows us to accomplish
things that are not normally possible (or are very tedious) with physical infrastructure. We can spin
up Ubuntu instances in minutes, and even set up auto-healing to cover us in situations that would
normally result in complete service disruption.

This time around, we’re going to work with cloud deployments again, and check out an awesome tool
called Terraform that will allow us to automate the provisioning of our cloud resources. We’ve already
explored the concept of automation back in Chapter 15, Automating Server Configuration with Ansible,
when we learned about the basics of Ansible. Terraform allows us to take our automation to the next
level and even interact with providers such as AWS directly.

In this chapter, we’ll explore the following concepts:

•	 Why it’s important to automate your infrastructure
•	 Introduction to Terraform and how it can fit within your workflow
•	 Installing Terraform
•	 Automating an EC2 instance deployment
•	 Managing security groups with Terraform
•	 Using Terraform to destroy unused resources
•	 Combining Ansible with Terraform for a full deployment solution

Why automate the building of our infrastructure? There are many benefits of doing so, and we’ll take
a look at some of those benefits in the next section.

Automating Cloud Deployments with Terraform462

Why it’s important to automate your infrastructure
Automation with regards to infrastructure is an expansive topic, and it easily deserves a book of its
own. In fact, there are not only books dedicated to it but entire online courses as well. There are many
different utilities you can use, each with its own pros and cons. We have configuration management
tools, such as Ansible, Chef, and Puppet. We looked at Ansible earlier in the book and worked through
some examples to see how powerful it is. When we worked with that earlier, I’m sure you immediately
saw the benefit—not having to build a solution manually is a beautiful thing.

The importance of not having to build solutions manually cannot be overstated. Perhaps the most
obvious benefit is the fact that it can save you hours, or even days of work. When I first started
working in IT, setting up servers was always a manual task. Sure, you could create a Bash script and
automate some tasks that way, but tools specifically designed to automate will handle the task much
more efficiently. An IT staff that would normally be overwhelmed at the thought of setting up a large
number of servers would be able to perform the same task much quicker with automation. And with
all the time that’s saved, IT staff members can focus on other tasks rather than spending the majority
of their time on one task.

Another benefit of automation is that the likelihood of human error is much lower. While you’re
building your automation solution, making mistakes is unavoidable. You may mistype something
while writing a script that causes a syntax error, or perhaps something doesn’t get created quite the
way you expected. But after you’ve spent the time building your automation scripts and verified there
are no errors, then you can run them again and again and the infrastructure will get created the same
way each time. Compare that to having to manually set up servers each time you wish to implement a
new solution, and you can imagine how often it may happen that there may be mistakes to fix. Some
of which you may not even discover until later on.

Automation also has another benefit you may not expect, Disaster Recovery. While we will cover
disaster recovery in Chapter 23, Preventing Disasters, it’s worth mentioning now because an effective
automation solution will make the process of recovery quicker. It’s an administrator’s worst nightmare
to even think that a server that’s important to your organization may someday fail, but it’s a fact of life.

Our organization may have a very complex application that consists of one or more web servers, a load
balancer, security settings, and more. It could take hours to rebuild a solution like that manually. But
with automation, you would simply run your scripts to recreate the same solution in mere minutes.
Automation itself won’t protect you from losing data (which would be an even scarier problem) but at
the very least it can help you to provision replacement resources quicker than if you had to do the same
manually. Not only that, I presume your clients (as well as your boss) will prefer your organization’s
application to come back online in minutes, rather than hours or days.

In addition, your automation scripts can serve as a form of living blueprint. Even if you aren’t planning on
reprovisioning your servers and related infrastructure, another administrator can look at your automation
scripts and understand better which components make up the overall solution, allowing them to get up
to speed quicker if they’re taking over the management of infrastructure from someone else.

Automation is one of those things that I probably won’t have to try too hard to sell to you, because if
you already have experience working in IT, then you already know how tedious it can be to manually
rebuild servers.

Chapter 20 463

Sometimes, it may feel as though we have more tasks to complete than we have hours in the workday.
But with automation, we can get some of that time back and possibly even lower our stress level a
bit. And it’s not the first time we’ve worked with automation; we did take a look at Ansible earlier in
the book, so you are probably well aware of the benefits. But what we’re going to do in this chapter
is implement automation at a lower level than Ansible, and we’ll do so with a solution known as
Terraform. What is Terraform, you may ask? In science, terraforming is an amazing process of taking
a planet that is uninhabitable and converting it into one that is able to support life as we know it. But
for our purposes, Terraform is the name of an awesome utility we can use to automate an entire cloud
computing implementation. In the next section, we’ll define it even more.

Introduction to Terraform and how it can fit within your
workflow
Terraform is an amazing tool created by a company called Hashicorp that can automate your
infrastructure at a level lower than Ansible, Puppet, or other configuration management solutions. In
fact, Terraform typically doesn’t replace those but complements them. With configuration management
tools, we generally have to create the initial server and set up the operating system first before we
can implement them. With Ansible, there are actually methods of using it to create infrastructure
components, but that’s beyond the scope of the book.

Not only that, but while Ansible is able to create some types of infrastructure, that’s not what it does
best. To understand where something like Terraform fits, it’s best to think of Terraform as making
things exist and Ansible as taking things that already exist and ensuring they’re configured properly.

When it comes to Terraform itself, it allows you to take advantage of a neat concept, Infrastructure as
Code. In the previous chapter, we set up an entire load-balanced application in AWS. We created an
EC2 instance, as well as an AMI, and then we built the load balancer along with Auto Scaling. While
that process was incredibly fun, it was a manual one. If you made mistakes during the process, you
had to go and fix them. After you were done, your solution was created and working. What Terraform
allows us to do is write code that represents our desired end state. When it runs, it checks the cloud
provider and performs an inventory. If something we’ve added to our scripts isn’t present with the
cloud provider, it will make sure that the current state matches the desired end state in our code. We
can even provision an entire cloud solution without even logging in to AWS beyond the first time.

An important consideration when it comes to automation tools is whether or not the tool is cross-
platform. Many cloud providers feature built-in tools to do the same thing that Terraform does. For
example, AWS has a feature called CloudFormation that allows you to script infrastructure builds, just
as you can with Terraform. But the problem is that CloudFormation is specific to AWS. You can’t utilize
that service to build infrastructure in Microsoft Azure or Google Cloud. A tool that’s cross-platform
can run in any environment. We already saw this with Ansible earlier in the book: Ansible doesn’t
mind if the servers you’re having it configure reside in AWS or even if they’re physical machines in a
rack. To Ansible, Ubuntu is Ubuntu, regardless of where it’s running. This allows you to use the same
tool in multiple environments, without having to recreate a new set of automation scripts for each
one. Terraform is also a cross-platform tool.

Automating Cloud Deployments with Terraform464

Why does it matter if a tool is cross-platform? If you have to maintain several completely different tools
that all do the same thing, it’s a waste of time. If you can learn one tool and use it in every environment
you support, then it’s less of a maintenance burden. This is why I always recommend avoiding platform-
specific tools, such as CloudFormation in AWS. There’s even a tool within AWS called OpsWorks that’s
used for the same purpose as Ansible (configuration management), but again is specific to AWS.

A typical organization will pivot in different directions multiple times throughout the life of the company.
An organization that is using AWS for 100% of its infrastructure may someday decide to support other
cloud providers. Sometimes, all it takes is the right client or situation to make the company consider
using a cloud provider for a project that would normally not be considered.

It could also be the case that a company might change primary providers due to a change made with
the current platform that increases cost, or some other reason. If you use cross-platform tools, then you
can take those tools with you (for the most part) if you change providers. Also, being able to support
multiple providers not only makes you a more powerful administrator but also offers additional value
to your organization.

Terraform itself is not going to be 100% identical between cloud platforms, though. The syntax does
change from one cloud provider to another. Currently, there doesn’t seem to be a solution available
for Infrastructure as Code that is 100% portable between environments. But considering solutions
such as CloudFormation are 0% transferable to other platforms, then Terraform still wins out in
comparison since it is a tool you can use with multiple providers. The general consensus of how
Terraform works will remain the same with each provider, so it’s going to still save you time if you
use it and then switch providers.

How does Terraform work? We’ll install it in the next section and actually use it to deploy an EC2
instance in the section after that. But in a nutshell, Terraform is a utility you can download to your
local laptop or desktop, and use to turn script files into actual infrastructure. It supports many different
cloud platforms, such as AWS, GCP, and others. It even supports VPS providers, such as Digital Ocean
and Linode. Terraform refers to each of those platforms as a provider and gives you the ability to
download the appropriate plugin within Terraform to support your chosen provider(s).

As you’ll see later in the chapter, Terraform allows you to test your configuration first, and preview the
changes it will make. Then, if you accept the changes, it will connect to your provider and create the
infrastructure as you’ve defined it in your code. Although we won’t cover version control in this chapter,
typical organizations will store their Terraform code within a Git repository or some other version
control system, so that the code is safe from being accidentally deleted. In a typical organization, one
or more administrators will work with the Terraform code and push their changes into the repository.

In the next section, we’ll walk through the process of installing Terraform so we will have everything
we need in order to get started and build some automation around our infrastructure.

Chapter 20 465

Installing Terraform
The process of running Terraform and using it to provision your cloud resources is generally initiated
on your local laptop or desktop. Terraform itself is downloaded from its website, and it’s available for
all of the leading operating systems.

Unlike the majority of applications, there’s no installer. Terraform is run directly from the file you
download; there’s no installation process to go through. You can install it system-wide if you want to
do so, but you can run it from any directory you wish. Download files for Terraform are located at the
following website: https://www.terraform.io/.

Once there, you should see a Download button:

Figure 20.1: The Terraform website

https://www.terraform.io/

Automating Cloud Deployments with Terraform466

After clicking the Download button, you’ll see a new page that will offer Terraform for six different
operating systems, including the usual suspects such as Linux, macOS, and Windows. Most likely, it
will automatically select the operating system that the computer you’re visiting the site from is using.
For example, here’s what the page looks like while downloading the macOS version:

Figure 20.2: The Terraform website, downloading for macOS

At this point, all you’ll have to do is download a version of Terraform specific to your operating system.
Most computers sold nowadays are 64-bit, so it should be straightforward to choose which one to
download. If you’d like to run Terraform from a Raspberry Pi, choose the Arm version for Linux. Once
you download it, you’ll have a ZIP file locally that you can extract. Inside, you’ll find a binary file simply
titled terraform and that’s all you’ll actually need.

You’ll be able to run terraform right from the command prompt of your operating system:

Chapter 20 467

Figure 20.3: Running terraform from a terminal window with no options

In the screenshot, I typed out the entire path to the downloaded and extracted terraform file, which
was saved in my home directory under the downloads folder. I ran it with no options, so it printed
out the help page.

If you’d like to install it system-wide, you can move terraform into the /usr/local/bin directory if
you’re running Linux or macOS:

sudo mv terraform /usr/local/bin

The /usr/local/bin directory is recognized by both Linux and macOS as a directory that is searched
for binary files. This concept is referred to as your $PATH, which is a special variable that holds all
the directories your profile is set to look into when attempting to execute a command. The method
of adding a new directory to your $PATH differs from one operating system to another, but in terms
of macOS and Linux, /usr/local/bin is already recognized, so when you copy terraform into that
directory, you should be able to simply type terraform in your terminal without needing to type the
full path each time you wish to use Terraform. This is optional, but it makes it simpler.

In order for Terraform to be able to work with AWS, we’ll need to generate an API key for it. This is
done inside the AWS Management Console, which you should sign into now so we can create what
we need. In the previous chapter, we discussed IAM, which is a service within AWS that allows you to
not only create user accounts for fellow administrators but also lets you create keys for programmatic
access. The latter will be how we allow Terraform to connect to our AWS account in order to perform
tasks on our behalf.

Automating Cloud Deployments with Terraform468

Inside the IAM section of the AWS management console, click on the Users link that you should see
in the left-hand menu, followed by the blue Add User button that you should see on that page. The
following form will appear:

Figure 20.4: Creating an IAM user for the purpose of running Terraform

Chapter 20 469

In my case, I decided to call my user terraform-provisioner, but you can use whatever name you’d
like. I checked the box next to Programmatic access and I left the second unchecked, because I do
not want this user to be able to log in to the console. Click Next: Permissions to continue. On the next
screen that comes up, we’ll set the policy that the user will have access to:

Figure 20.5: Creating an IAM user for Terraform (continued)

For this screen, click on the box that reads Attach existing policies directly to highlight it, and check
the box below to add the AdministratorAccess policy to this object. This is the policy that will grant
Terraform its ability to interact with AWS.

Click Next: Tags to continue, then on the next screen, you can skip adding tags (unless you’d like to
add them) and you can click Next: Review and then Create User to finish the process.

Automating Cloud Deployments with Terraform470

The final screen that appears should report that the process was successful, and the Download .csv
button gives you the ability to download your key. You can also reveal the secret access key by clicking
the Show button, as I’ve done in Figure 20.6:

Figure 20.6: Creating an IAM user for Terraform (final screen)

I’d like to give you a few warnings about the key, though. First, whether you download the key or
reveal it by clicking the Show button, this is the last time you’ll ever see it. You won’t be given another
opportunity to download the full key. I recommend you download the key and store it in a safe place.
You should protect the key and not let anyone have access to it, and you should definitely not upload it
to a version control repository or any other resource that’s publicly available. And you should absolutely
not show the key in clear text in a book that a bunch of people is going to read. If this key falls into the
wrong hands, then anyone that has it will be able to interact with your AWS account. Treat this key
with care. The only reason I show mine here is because I want you to see what the process actually
looks like. I’ll delete it from my AWS account before the publishing process of this book is finalized.
On your end, definitely don’t let this key leak!

Now we have everything we need to proceed to build AWS resources with Terraform. In the next
section, we’ll create an EC2 instance.

Automating an EC2 instance deployment
Let’s take a look at an example Terraform configuration file that will allow us to build an EC2 instance:

provider "aws" {
 region = "us-east-1"
}

Chapter 20 471

resource "aws_instance" "my-server-1" {
 ami = "ami-09d56f8956ab235b3"
 associate_public_ip_address = "true"
 instance_type = "t2.micro"
 key_name = "jay_ssh"
 vpc_security_group_ids = ["sg-0597d57383be308b0"]
 tags = {
 Name = "Web Server 1"
 }
}

Terraform files are saved with a .tf filename extension, and as for the actual name, you can call it
whatever you wish. I named mine terraform_example_1.tf. The underscores in the filename aren’t
required but make it easier to use on the command line since you won’t have to escape spaces. I
placed my terraform_example_1.tf file inside a directory of its own, which is recommended. Your
Terraform configuration files should be separate from other files, so having a dedicated directory for
such files is ideal.

As for the actual code itself, let’s explore it section by section:

provider "aws" {
 region = "us-east-1"
}

The provider block tells Terraform what type of provider we’ll be working with. We’re setting that to
aws here. As mentioned earlier, Terraform is able to work with various cloud providers, of which AWS is
only one. Underneath that, we’re setting the region variable to us-east-1. On your end, I recommend
setting this to whatever region you were using in the previous chapter; that will make the process
easier for us since we already have some resources there that we can reuse for now.

resource "aws_instance" "my-server-1" {

Here, we’re starting a new resource block. Each provider has its own building blocks (resources), and
specific to AWS, we can use aws_instance. On this line, we’re also naming the instance, and calling
it my-server-1.

Note that this is a name within Terraform we’re providing, not the actual name that will be used in
AWS itself. Within Terraform, we’ll want to have some sort of name to refer back to this particular
AWS instance if we need to refer to it again elsewhere.

 ami = "ami-09d56f8956ab235b3"

Next, we’re choosing the AMI we’d like to use for our instance. As discussed in the previous chapter,
an AMI is an image we can use to build a server in AWS. The instance ID that I used here is for the
official Ubuntu 22.04 AMI that comes as default with AWS. AMIs are specific to the region they were
created in, so the instance ID here is specific to us-east-1.

Automating Cloud Deployments with Terraform472

If you’re also using us-east-1, you can use the above AMI ID as-is (so long as it’s not replaced by AWS
with a newer one in the future). If in doubt, you can go into the AWS console, then navigate to the EC2
console, and go through the process as if you were going to manually create an EC2 instance based
on Ubuntu, and copy the AMI ID from there. Perhaps even easier, you can use the Amazon EC2 AMI
Locator (provided directly by Canonical) to find an AMI ID to use: https://cloud-images.ubuntu.
com/locator/ec2/.

You’re able to filter that list by Ubuntu version as well as location. That way, you can find the AMI ID
for an Ubuntu 22.04 AMI that’s within your chosen region. Change the AMI ID in the example code
to the one you wish to use.

Also, you’ll probably notice that there are quite a few spaces in between ami and = "ami-
09d56f8956ab235b3". It’s common practice with Terraform syntax to align the equal sign of every line
within a block, which makes the code look cleaner. This isn’t required, and nothing bad will happen if
you don’t line everything up perfectly, but some may argue that the overall script looks cleaner that way.

 associate_public_ip_address = "true"

With this line, we’re deciding to utilize a public IP address with our instance, which is required if we
wish to be able to access it remotely.

 instance_type = "t2.micro"

Here, we’re setting the desired instance type for our newly created server. As discussed in the previous
chapter, there are multiple instance types available, each with a different cost. The t2.micro instance
type is eligible for the free tier, so that’s the reason I chose it.

 key_name = "jay_ssh"

In the previous chapter, when we created an EC2 instance manually, part of that process was creating
an OpenSSH key. The key that you’ve created is registered to your AWS account, so you can refer to it
by the name you gave it. I called mine jay_ssh, but you’ll want to change this to whatever you named
yours. You can see a list of your OpenSSH keys in the EC2 dashboard within AWS; there’s a section in
the menu called Key Pairs where you can remind yourself what you’ve named your key if you forgot.

 vpc_security_group_ids = ["sg-0597d57383be308b0"]

https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/

Chapter 20 473

During the last chapter, we created a security group that allowed both Apache and OpenSSH to
communicate with our instance. When you create a security group, it’s designated with its own security
group ID. The security group ID I used in the example was the one that was generated for me, so it
won’t work for you. If you access the Security Groups section of the EC2 console, you can find the
security group ID for the one that you’ve created. The ID for it should start with sg-, followed by a
series of characters. Add yours in place of what I have for mine in the example.

 tags = {
 Name = "Web Server 1"
 }

In the last section of the example, we’re setting a tag. As discussed in the previous chapter, AWS allows
you to create tags that are useful information you can have attached to an instance, which can give
you additional information about its intended use. The Name tag is a special tag that changes the name
that you see for the instance in the AWS EC2 list. You can name yours whatever you’d like.

At this point, we should be all set to go ahead and run Terraform to create our instance using our
Terraform file as a blueprint. First, we need to set the access and secret access keys for Terraform to
use. In your terminal, you can enter the following commands to do this:

export AWS_ACCESS_KEY_ID="AKIAVNXBZU2OBNWQQ7ET"
export AWS_SECRET_ACCESS_KEY="KVrAFvkwUa4Vn2ZIZHGy/IKMxdMo1plaMQoXZPVv"

Those commands are simply run from your terminal and create environment variables containing
the required keys. Terraform will look for the existence of the AWS_ACCESS_KEY_ID and AWS_SECRET_
ACCESS_KEY variables when it runs, and by exporting them, we’re making them available in our session.
There’s actually a way you can add the keys right into the Terraform file itself, but we don’t want to
do that, because then the key might get uploaded somewhere public if we do upload the entire file
somewhere. There’s also a way to set up variables within the Terraform file to include these keys, but
that’s beyond the scope of this chapter.

After exporting the variables, we need to initialize Terraform to ensure it has the required components
it needs to interact with AWS:

terraform init

With that example, you can add the full path to the terraform utility if it’s not in a shared $PATH location,
such as /usr/local/bin, which is a recommended location that I mentioned earlier. If you did copy
it to /usr/local/bin, then you should be able to simply type terraform instead of the full path.

Automating Cloud Deployments with Terraform474

The terraform init command instructs Terraform to initialize itself. It will look at any Terraform
files you have in your current working directory and look for the provider line. In our case, that’s at
the beginning of the file. We set it to aws. This will trigger Terraform to download the provider add-
on for AWS:

Figure 20.7: Initializing Terraform

As you can see from Figure 20.7, when I ran the command on my end, it downloaded the AWS provider
to prepare it for use.

Next, we should run what’s known as a Terraform plan. Running a plan instructs Terraform to not
make any changes but instead to check your syntax and ensure that you haven’t mistyped anything:

terraform plan

The terraform plan command doesn’t just check syntax, it will connect to your provider, in our case
AWS, to do an inventory and compare the changes in the configuration file to the current state of
the provider. If it’s unable to connect to the provider, an error will be returned. If the connection is
successful, Terraform will list all the changes it would’ve made if you instructed it to actually perform
the tasks. In plan mode, it will never actually carry out any instructions but merely provide you with
a preview.

Chapter 20 475

If for some reason Terraform can’t connect to your AWS account, you should make sure you’ve run the
two export commands earlier, and that you’ve done so with the appropriate values. If you close your
terminal window, you’ll need to run those export commands again since those environment variables
do not persist between terminal sessions. If successful, the Terraform plan will run:

Figure 20.8: Running a Terraform plan

In Figure 20.8, I’ve left off quite a bit of output. If your plan run was successful, Terraform will provide
you with an overview of all the changes Terraform would’ve made if you were actually telling it to
provision infrastructure.

If you would like to actually perform the changes, you can run a Terraform apply command. Before
you do that though, always make it a habit to look at the output of the plan first. Notice the following
line in the output:

Plan: 1 to add, 0 to change, 0 to destroy

In our case, it’s not going to destroy or change anything, but it’s going to add something if it were to
run. If you scroll up, you can find additional detail about the changes it might make if we were to run
an apply. Pay special attention to what it might want to destroy. For some changes, Terraform may
deem it necessary to delete something and recreate it from scratch. If you’re using Terraform to update
an existing server, you most likely won’t want that server to be deleted. In that case, don’t continue
and run an apply. Always scrutinize the changes Terraform wants to make before you proceed and
have it actually perform tasks.

Next, assuming we’re comfortable with the changes, we’ll proceed with an apply. Keep in mind that
although running a plan with Terraform will cause it to look for and report syntax errors, passing the
plan process with no syntax errors reported doesn’t mean that there aren’t any. There’s only so much
Terraform can do before you actually run it, so there may be errors that it can only catch during an
apply. As you can guess, the command to run the apply is fairly obvious:

terraform apply

Automating Cloud Deployments with Terraform476

When it runs, the terraform apply command will run another sanity check, show the number of
changes again, and ask if you’d like to continue:

Figure 20.9: Running the terraform apply command

To proceed, type yes and press Enter. As it runs, you can actually see the resources you’re having
Terraform create show up in the AWS console as they’re being provisioned. In the case of an EC2
instance as we’re doing here, we’ll be able to see the new instance in the list as it comes up:

Figure 20.10: An instance showing up in the EC2 list in AWS, created by Terraform

If all goes well, Terraform itself will report the process as being successful:

Figure 20.11: A successful terraform apply

Now we’ve created an EC2 instance in AWS, and we did so by utilizing automation. Sure, it hasn’t
done all that much for us yet, but this is just a proof of concept. There are many things we can do
with Terraform.

There’s something missing, though—security! We should also automate the process of adding a security
group to the instance, which will provide us with the access we need to be able to connect to it and
manage it. We’re able to access the instance now, but it’s very possible that it doesn’t have external
internet access yet. In the next section, we’ll configure the security group for the instance as well,
which will allow us to configure which ports are open and which IP addresses are able to communicate
with our instance.

Managing security groups with Terraform
Security groups, as you learned in the previous chapter, allow you to control what is able to communicate
with your resources. In the previous section, we reused the security group that we created last time,
but it would be useful to understand how to create one from scratch.

Chapter 20 477

Here’s the example Terraform file again, with some new code added:

provider "aws" {
 region = "us-east-1"
}
resource "aws_instance" "my-server-1" {
 ami = "ami-09d56f8956ab235b3"
 associate_public_ip_address = "true"
 instance_type = "t2.micro"
 key_name = "jay_ssh"
 vpc_security_group_ids = ["${aws_security_group.external_access.
id}"]
 tags = {
 Name = "Web Server 1"
 }
}
 resource "aws_security_group" "external_access" {
 name = "my_sg"
 description = "Allow OpenSSH and Apache"
 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["172.11.59.105/32"]
 description = "Home Office IP"
 }
 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["172.11.59.105/32"]
 description = "Home Office IP"
 }
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

Automating Cloud Deployments with Terraform478

I’ve added an entirely new section to the file, but before we get to that, I also changed a line from the
previous example. It’s the tenth line down:

vpc_security_group_ids = ["${aws_security_group.external_access.id}"]

Previously, we set the security group ID for this line in the file to the security group ID that already
existed, the one we created in the previous chapter. The configuration I’ve added further down will
create a new security group, and here I’m setting the security group ID to a variable instead. The
${aws_security_group.external_access.id} variable that was set here is known to Terraform as
an output variable. We use an output variable for the security group ID because we have no idea what
the security group ID will be since the new security group hasn’t even been created yet. Therefore, we
use an output variable here and reference the name of the security group we’ll be creating (external_
access) with .id at the end, which will reference the security group ID once it’s created. That way,
we can reference a security group here and assign it to the instance, without having to know ahead
of time what its ID will be.

Further down the file, we begin a new section:

resource "aws_security_group" "external_access" {

With that line, we’re telling Terraform we’d like to create another new resource, this time a security
group. We’re giving this security group a name of external_access, which is just a name within
Terraform we can reference it as, not an actual name it will be called within AWS.

 name = "my_sg"

Here, we’re giving the security group its actual name, the name we’ll see it shown as within AWS
outside of Terraform.

 description = "Allow OpenSSH and Apache"

For the description line, there’s nothing too surprising here: we’re giving it a description we can
use to describe its purpose and what the security group will be used for. Similar to the security group
we’ve created manually in the previous chapter, we’ll be opening up OpenSSH and Apache with this
security group.

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["172.11.59.105/32"]
 description = "Home Office IP"
 }

The ingress block allows us to set a port to allow connections to come in from; in this case, we’re
allowing connections from port 22, which, as you probably already know, is the default port for OpenSSH.
We don’t want to open this port up to receive connections from the entire public internet, so we’re
allowing the incoming traffic to this port only if it’s coming from an IP address of 172.11.59.105/32.

Chapter 20 479

In your case, you can replace that with the public IP address of your home office or organization.

The second ingress block is the same as the first, only this time it’s allowing connections to port 80
for Apache:

 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["172.11.59.105/32"]
 description = "Home Office IP"
 }

We also add an egress security group rule as well because, without this, our instance will not be able
to reach the internet:

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

As with the previous example, we’ll need to run a plan and then an apply to transform our new code
into reality. I’ll leave it up to you to run both; as long as you haven’t mistyped anything, it should apply
the changes and add the new security group. Inside AWS, you should see the new security group in the
console, and also see it applied to your EC2 instance. Unless you reused the AMI from the previous
chapter with Apache built in, you won’t be able to connect to the instance via port 80 since Apache is
probably not installed, but I added it just to show you an example.

At this point, I recommend that you play around with the Terraform script we have so far, to get a feel
for its syntax. Feel free to implement something extra; you can refer to the Terraform documentation
for additional resources you can create with Terraform.

Congratulations on using Terraform to provision your infrastructure. Now, let’s use Terraform to
destroy stuff.

Using Terraform to destroy unused resources
Although Terraform’s primary purpose is to create infrastructure, it can also be used to delete
infrastructure as well. This function is known as a Terraform destroy. With destroy, Terraform
will attempt to remove all infrastructure that’s defined in your configuration file. At this point, our
configuration file creates an EC2 instance, as well as a security group. If we run destroy against it,
then both resources will be removed.

Automating Cloud Deployments with Terraform480

Removing infrastructure with Terraform will likely be a use case you won’t utilize as often as creating
resources. One of the values of the destroy functionality, though, is that you can use it to “reset”
a test environment, by removing everything defined in the file. Then you’re free to use the same
script to create everything again. On my end, I learn a lot faster by breaking things and fixing them
repeatedly. You really shouldn’t run a destroy job against production infrastructure that you care
about, but if you’re just using Terraform in a test account that doesn’t have any important instances
inside it, then you can continually build and dismantle your test resources over and over as you learn.
Another benefit is that an organization may test a Terraform build for a client in a test account first
before implementing it in production, and you can verify that everything will be built correctly before
performing the actual work for the client.

Performing a destroy within Terraform is just as simple as previous examples:

terraform destroy

Just like before, we’ll get confirmation first before it removes everything, showing us exactly what
Terraform wants to remove when a destroy task is run:

Figure 20.12: Preparing to run terraform destroy to remove resources

Pay careful attention to what Terraform wants to delete when you run it with the destroy option. The
screenshot doesn’t show the full output; it’s quite long. Similar to apply, if you scroll up, you’ll see that
the output will contain detail about what in particular will be removed if we agree to continue. If you
type yes and press Enter, the resources identified will be destroyed, and you’ll receive a confirmation
message confirming that the task was carried out:

Figure 20.13: Final confirmation after destroying previously provisioned resources

Chapter 20 481

Basic usage of the terraform command is logically structured; we looked at how to run a plan as well
as an apply, and now we know how to destroy our resources as well so we can start over with a clean
slate. The majority of the time spent learning Terraform will be a matter of learning the syntax of its
config files, but that will come in time. At this point in our journey, we should have a solid foundation
we can build upon.

However, we’re not done yet! I’ve referenced Ansible several times in this chapter, reminding you
about the fact that we used it in the past to configure a server. But what if I told you we can combine
Terraform and Ansible? We certainly can, and we’ll do so in the next section.

Combining Ansible with Terraform for a full deployment
solution
One of the best things about automation tools is that they can often be combined to offer a shared
benefit. Ansible is one of my favorite tools: you can automate the installation of packages, the creation
of users, the copying of files, or most other tasks you can think of. If you are able to perform a task
on the command line, chances are Ansible can automate it. Terraform, as you just saw, is really good
at creating new infrastructure and automating the initial setup of servers, as well as networks and
settings for AWS and other platforms. If we combine the two, it gets even better.

I find the duo of Terraform and Ansible to be a great fit. Combining these two solutions works well
in my experience; we can use Terraform to create our initial server and infrastructure builds, and
then use Ansible to automate future enhancements. But it’s actually even better than that; we can
configure Terraform to actually launch the initial Ansible run for us, so we only have to run a single
script. After Terraform creates the infrastructure, provisioning of additional settings is handed off to
Ansible. It’s a great combination.

How does it work? In the previous chapter, we explored the concept of user data, which is a feature
within AWS that allows you to run a script as an instance is being created. We used it to install all the
patches and then proceed and install Apache. The example we went over was a simple Bash script and
wasn’t very exciting in and of itself. Sure, it did work, but we can implement a better solution. And
you know what? We already have. In Chapter 15, Automating Server Configuration with Ansible, we were
able to utilize Ansible Pull, a special mode of Ansible that allows us to pull code from a repository,
and run it locally on our instance. The Ansible playbook we wrote installs Apache for us, the same as
our Bash script did in the previous chapter. As a refresher, we are able to run the following command
to trigger Ansible Pull:

ansible-pull -U https://github.com/myusername/ansible.git

Of course, this requires Ansible itself to be installed, and the repository needs to already exist. If you
have already followed along in that chapter and you still have the repository we’ve created, then you
already have what you need to combine Ansible with Terraform.

Automating Cloud Deployments with Terraform482

To save you the trouble of flipping back to Chapter 15, Automating Server Configuration with Ansible,
here’s the final local.yml file we ended up with:

- hosts: localhost
 become: true
 tasks:
 - name: Install Apache
 apt: name=apache2
 - name: Start the apache2 services
 service:
 name: apache2
 state: started
 - name: Copy index.html
 copy:
 src: index.html
 dest: /var/www/html/index.html

As you can see, this playbook is installing Apache, starting it, and also copying an index.html file to
replace the default web page. It’s fairly easy to implement this in Terraform. Here’s our Terraform
script again, with a new line added, shown in bold:

provider "aws" {
 region = "us-east-1"
}
resource "aws_instance" "my-server-1" {
 ami = "ami-0dba2cb6798deb6d8"
 associate_public_ip_address = "true"
 instance_type = "t2.micro"
 key_name = "jay_ssh"
 vpc_security_group_ids = ["${aws_security_group.external_access.
id}"]
 user_data = file("bootstrap.sh")
 tags = {
 Name = "Web Server 1"
 }
}
resource "aws_security_group" "external_access" {
 name = "my_sg"
 description = "Allow OpenSSH and Apache"
 ingress {
 from_port = 22
 to_port = 22

Chapter 20 483

 protocol = "tcp"
 cidr_blocks = ["173.10.59.105/32"]
 description = "Home Office IP"
 }
 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["173.10.59.105/32"]
 description = "Home Office IP"
 }
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

The new addition to the file is on line #11. We’re referencing a bootstrap script, and in that script, we’ll
add any commands we wish to run on the newly created instance:

 user_data = file("bootstrap.sh")

bootstrap.sh will need to exist in the same directory as the Terraform configuration file itself. The
file doesn’t exist yet though, so go ahead and create it, and inside you can place the following lines:

#!/bin/bash
sudo apt update
sudo apt install -y ansible
sudo ansible-pull -U https://github.com/myusername/ansible.git

We haven’t made an overly complex change to the file, but what we did add gives us a great deal of
benefits. The user_data option allows us to leverage the same user data function that’s built into
AWS and schedule commands to run when an instance is first created. In this example, we utilize the
user_data option to run a series of commands against the new instance, which will install Ansible
and then launch ansible-pull to download a repository containing an Ansible playbook and run it
locally. The playbook itself was set up in Chapter 15, Automating Server Configuration with Ansible, so
we’re just leveraging what we’ve already created in the past, and we’re having Terraform kick off the
Ansible job for us when it brings up the instance.

That brings us to the end of this chapter. I hope setting up automation with Terraform was a fun
experience; I definitely enjoy working with it.

Automating Cloud Deployments with Terraform484

Summary
There are many configuration management and provisioning tools available for automating our
infrastructure builds. In this chapter, we took a look at Terraform, and then we even combined it
with Ansible, which we were already using. Using Terraform, we were able to automate the creation
of an EC2 instance in AWS, along with a security group to control how it can be accessed. Terraform
is a very large subject, and the concepts contained in this chapter are only the beginning. There’s
so much more you can do with Terraform, and I highly recommend you keep practicing with it and
coming up to speed.

In the next chapter, we’re going to learn some methods we can utilize to add additional security to
our Ubuntu servers. While no server is bulletproof, there’s a basic level of security we can implement
that will make it less likely for our server to be compromised. It will be a very important chapter, so
you won’t want to miss it.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://packt.link/LWaZ0

21
Securing Your Server

It seems like every month there are new reports about companies getting their servers compromised.
In some cases, entire databases end up freely available on the internet, which may even include sen-
sitive user information that can aid miscreants in stealing identities. Linux is a very secure platform,
but it’s only as secure as the administrator who sets it up. Security patches are made available on a
regular basis, but they offer no value unless you install them. OpenSSH is indispensable for remote
administration, but it’s also a popular target for threat actors trying to break into servers. Backups
are a must-have but are potentially useless if they’re not tested regularly or they fall into the wrong
hands. In some cases, even your own employees can cause intentional or unintentional damage. In
this chapter, we’ll look at some of the ways you can secure your servers from threats.

In this chapter, we will cover:

•	 Lowering your attack surface
•	 Understanding and responding to Common Vulnerabilities and Exposures (CVEs)
•	 Installing security updates
•	 Automatically installing patches with the Canonical Livepatch service
•	 Securing OpenSSH
•	 Installing and configuring Fail2ban
•	 MariaDB best practices for secure database servers
•	 Setting up a firewall
•	 Encrypting and decrypting disks with Linux Unified Key Setup (LUKS)
•	 Locking down sudo

To get started, let’s first talk about ways you may be able to lower your attack surface.

Lowering your attack surface
Your Ubuntu Server installations will likely have one or more important applications running on them,
some of which might be available to the public internet. This is very common for web servers, for
example, as it’s the primary goal of a web server to offer a website that your users can access.

Securing Your Server486

Every application that is accessible from outside the walls of your organization is a potential entry
point for threat actors who might attempt to break into your server. The attack surface of a server is
essentially a list of all the things that are potentially exploitable. In regards to security, it’s important
to understand which applications must be accessible remotely, and which ones you can lock down.
Every application you lock down lowers the likelihood of it being taken over by an outside threat. The
process of locking things down is what we refer to as lowering your attack surface.

Ideally, in a perfect world, we would disallow all outside connections to all of our servers. Threat ac-
tors can’t break into a server that is completely inaccessible from the outside. That doesn’t mean that
there aren’t any threats at all, as disgruntled employees are always a potential risk. But a server that’s
completely inaccessible is the most secure of all. However, it’s often not feasible to disallow all outside
connections. If your company provides a popular public website, then it has to be publicly available.
However, if you have an application running on your server that is only used by users internally, then
you should lock it down if you can. Whenever possible, it’s good to implement a policy that outside
connections are always disallowed by default unless there’s a business need to open it up.

What do we mean by “disallow?” There are multiple ways you can disallow access to an application
on your server. The most effective of these is to completely uninstall the application. If you don’t have
an application installed at all, it’s impossible for it to be a problem. It probably goes without saying
that you should uninstall applications that aren’t necessary, but the entire point of running a server
is to serve resources to users, so you’ll always have applications running on your server (otherwise
there, wouldn’t be a point in having a server at all to begin with). Aside from removing an application,
you can utilize a firewall to only allow specific connections. We’ll actually take a look at setting up a
firewall later on in this chapter.

Most importantly, after a new server is implemented, an administrator should always perform a security
check to ensure that it’s as secure as it can possibly be. No administrator can think of everything, and
even the best among us can make a mistake, but it’s always important that we do our best to ensure
we secure a server as much as we can. There are many ways you can secure a server, but the first thing
you should do is lower your attack surface. This means that you should close as many holes as you
can, and limit the number of things that outsiders could potentially be able to access. In a nutshell,
if it’s not required to be available from the outside, lock it down. If it’s not necessary at all, remove it.

To start inspecting your attack surface, the first thing you should do is see which ports are listening
for network connections. When an attacker wants to break into your server, it’s almost certain that a
port scan is the first thing they will perform. They’ll inventory which ports on your server are listening
for connections, determine what kind of application is listening on those ports, and then try a list of
known vulnerabilities to try to gain access. To inspect which ports are listening on your server, you
can do a simple port query with the ss command:

sudo ss -tulpn

The sudo portion of that command is optional, but if you do include sudo, you’ll see more information
in the output. Normally I’d include a screenshot here, but there’s so much information that it won’t fit
on this page. From the output, you’ll see a list of ports that are listening for connections. If the port
is listening on 0.0.0.0, then it’s listening for connections from any network.

Chapter 21 487

This is potentially bad. If the port is listening on 127.0.0.1, then it’s not actually accepting outside
connections. Take a minute to inspect one of your servers with the ss command and note which ser-
vices are listening for outside connections.

Armed with the knowledge of what ports your server is listening on, you can make a decision about
what to do with each one. Some of those ports may be required, as the entire purpose of a server is
to serve something, which usually means communicating over the network. All of these legitimate
ports should be protected in some way, which usually means configuring the service after reviewing its
documentation for best practices (which will depend on the particular service) or enabling a firewall,
which we’ll get to in the Setting up a firewall section. If any of the ports are not needed, you should
close them down. You can either stop their daemon and disable it, or remove the package outright. I
usually go for the latter, since it would just be a matter of reinstalling the package if I changed my mind.

OpenSSH is a service that you’re almost always going to have running on your servers. As you are
already well aware, it’s a great tool for remote administration. But as useful as it is, it’s usually going
to be the first target for any attacker attempting to gain entry into your server.

We won’t want to remove this though, because it’s something we’ll want to take advantage of. What
should we do? Not to worry, I’ll be dedicating a section to securing OpenSSH later in this chapter. I
mention this now in order to make sure you’re aware that lowering your attack surface will absolutely
need to include at least a basic amount of security tweaking for OpenSSH. In addition, I’ll go over
Fail2ban in this chapter as well, which can help add an additional layer of security to OpenSSH.

As I’ve mentioned, I’m a big fan of removing packages that aren’t needed. The more packages you
have installed, the larger your attack surface is. It’s important to remove anything you don’t absolutely
need. Even if a package isn’t listed as an open port, it could still be leveraged in a vulnerability chain.
If an attacker uses a vulnerability chain, that essentially means that they first break into one service
and then use a vulnerability in another (possibly unrelated) package to elevate their privileges and
attempt to gain full access. For that reason, I will need to underscore the fact that you should remove
any packages you don’t need on your server. An easy way to get a list of all the packages you have
installed is with the following command:

dpkg --get-selections > installed_packages.txt

This command will result in the creation of a text file that will contain a list of all the packages that
you have installed on your server. Take a moment to look at it. Does anything stand out that you know
for sure you don’t need? You most likely won’t know the purpose of every single package, and there
could be hundreds or more. A lot of the packages that will be contained in the text file are distribu-
tion-required packages you can’t remove if you want your server to boot up the next time you go to
restart it. If you don’t know whether or not a package can be removed, do some research on Google.
If you still don’t know, maybe you should leave that package alone and move on to inspect others. By
going through this exercise on your servers, you’ll never really remember the purpose of every single
package and library, but you should still find some things that you’ll be able to clean up. Eventually,
you’ll come up with a list of typical packages most of your servers don’t need, which you can make
sure are removed each time you set up a new server. You could even curate a list of unneeded packages,
and then create an Ansible playbook to make sure they’re not installed.

Securing Your Server488

While attempting to clean up unneeded packages, a useful trick is to use the following command to
check whether or not other packages depend on the package you are thinking of removing:

apt-cache rdepends <package-name>

As an example, I ran that command against the tmux package that I installed on a test server, but you
can use whichever package name you’d like as an argument to check to see if anything depends on it:

apt-cache rdepends tmux

The output I received on my end is the following:

Figure 21.1: Updating packages on an Ubuntu server

With the output of the previous command, you can easily identify if another package depends on the
package you are thinking about removing. In the example output, we can see that tmux is actually
installed as a dependency of the ubuntu-server package. This means that tmux is quite possibly
installed by default on your server, but that may vary depending on whether or not you’ve installed
Ubuntu Server yourself or are using a cloud image. Cloud providers don’t always configure Ubuntu
Server images the same way. But at the very least, you can identify dependencies and make a more
informed decision on whether or not you can safely remove a package.

Chapter 21 489

Another important consideration is making sure to use only strong passwords. This probably goes
without saying, since I’m sure you already understand the importance of strong passwords. Howev-
er, I’ve seen hacks recently in the news caused by administrators who set weak passwords for their
external-facing database or web console, so you never know. The most important rule is that if you
must have a service listening for outside connections, then it absolutely must have a strong, randomly
generated password. Granted, some daemons don’t have a password associated with them (Apache is
one example; it doesn’t require authentication for someone to view a web page on port 80). However,
if a daemon does have authentication, it should have a very strong password. OpenSSH is an example
of this. If you must allow external access to OpenSSH, that user account should have a strong randomly
generated password. Otherwise, it will likely be taken over within a couple of weeks by a multitude
of bots that routinely go around scanning for these types of things. In fact, it’s best to disable pass-
word authentication in OpenSSH entirely, which we will do later in this chapter. Disabling password
authentication increases the security around OpenSSH quite a bit.

Finally, it’s important to employ the principle of least privilege for all your user accounts. You’ve
probably gotten the impression from several points I’ve made throughout the book that I distrust
users. While I always want to think the best of everyone, sometimes the biggest threats can come
from within (disgruntled employees, accidental deletions of critical files, and so on). Therefore, it’s
important to lock down user accounts as much as possible, and allow them access to only what they
actually need to perform their job. This may involve, but is certainly not limited to:

•	 Adding a user to the smallest possible number of groups
•	 Defaulting all network shares to read-only (users can’t delete what they don’t have permission

to delete)
•	 Routinely auditing all your servers for user accounts that have not been logged into for a time
•	 Setting account expirations for user accounts, and requiring users to reapply to maintain

account status (this prevents hanging user accounts)
•	 Allowing user accounts to access as few system directories as possible (preferably none, if

you can help it)
•	 Restricting sudo to specific commands (more on that later on in this chapter)

Above all, make sure you document each of the changes you make to your servers, in the name of secu-
rity. After you develop a good list, you can turn that list into a security checklist to serve as a baseline
for securing your servers. Then, you can set reminders to routinely scan your servers for unused user
accounts, unnecessary group memberships, and any newly opened ports.

Even if the output shows a package has no dependencies, you still may not want to remove
it unless you understand the functionality it provides and what impact removing the
package may have on your system. You can always Google the package name for more
details, but at the very least you should look for open ports and focus on those first, since
open ports have a greater impact on the security of your server. We’ll look at this in more
detail later in this chapter, in the Setting up a firewall section.

Securing Your Server490

Now you should have some good ideas on how you can lower your attack surface. It’s also important
to keep up to date on the current trends and notices surrounding security issues that were reported.
In the next section, we’ll take a look at Common Vulnerabilities and Exposures (CVEs), which can
help you better understand the nature of threats in the wild.

Understanding and responding to CVEs
I’ve already mentioned some of the things you can do in order to protect your server from some com-
mon threats, and I’ll give you more tips later on in this chapter. But how does one know when there’s
a vulnerability that needs to be patched? How do you know when to take action? The best practices
I’ll mention in this chapter will only go so far; at some point, there may be some sort of security issue
that will require you to do something beyond generating a strong password or locking down a port.

The most important thing to do is to keep up with the news. Subscribe to sites that report news on
security vulnerabilities, and I’ll even place a few of these in the Further reading section of this chapter.
When a security flaw is revealed, it’s typically reported on these sites and given a CVE number, where
security researchers will document their findings.

CVEs are found in special online catalogs detailing security vulnerabilities and their related infor-
mation. In fact, many Linux distributions (Ubuntu included) maintain their own CVE catalogs with
vulnerabilities specific to their platform. On such a page, you can see which CVEs the version of your
distribution is vulnerable to, which have been responded to, and what updates to install in order to
address them.

Often, when a security vulnerability is discovered, it will receive a CVE identification right away, even
before mitigation techniques are known. In my case, I’ll often watch a CVE page for a flaw when one is
discovered, and look for it to be updated with information on how to mitigate it once that’s determined.

Most often, closing the hole will involve installing a security update, which the security team for
Ubuntu will create to address the flaw. In some cases, the new update will require restarting the server
or at least a running service, which means I may have to wait for a maintenance period to perform
the mitigation.

I recommend taking a look at the Ubuntu CVE tracker, available at https://ubuntu.com/security/
cves. On this site, Canonical (the makers of Ubuntu) keeps information regarding CVEs that affect
the Ubuntu platform. There, you can get a list of vulnerabilities that are known to the platform as
well as the steps required to address them. There’s no one rule about securing your server, but paying
attention to CVEs is a good place to start. We’ll go over installing security updates in the next section,
which is the most common method of mitigation.

Installing security updates
Since I’ve mentioned updating packages several times, let’s have a formal conversation about it. Updat-
ed packages are made available for Ubuntu quite often, sometimes even daily. These updates mainly
include the latest security updates but may also include new features. Since Ubuntu 22.04 is an LTS
release, security updates are much more common than feature updates.

https://ubuntu.com/security/cves
https://ubuntu.com/security/cves

Chapter 21 491

Installing the latest updates on your server is a very important practice, but, unfortunately, it’s not
something that all administrators keep up with for various reasons.

When installed, security updates very rarely make many changes to your server, other than helping
to keep it secure against the latest threats. However, it’s always possible that a security update that’s
intended to fix a security issue ends up breaking something else. This is rare, but I’ve seen it happen.
When it comes to production servers, it’s often difficult to keep them updated, since it may be cata-
strophic to your organization to introduce change within a server that’s responsible for a large por-
tion of your profits. If a server goes down, it could be very costly. Then again, if your servers become
compromised and your organization ends up the subject of a CNN hacking story, you’ll definitely wish
you had kept your packages up to date!

The key to a happy data center is to test all updates before you install them. Many administrators will
feature a system where updates will graduate from one environment to the next. For example, some
may create virtual clones of their production servers, update them, and then see whether anything
breaks. If nothing breaks, then those updates will be allowed on the production servers.

In a clustered environment, an administrator may just update one of the production servers, see how
it gets impacted, and then schedule a time to update the rest. In the case of workstations, I’ve seen
policies where select users are chosen for security updates before they are uploaded to the rest of the
population. I’m not necessarily suggesting you treat your users as guinea pigs, but everyone’s orga-
nization is different, and finding the right balance for installing updates is very important. Although
these updates represent change, there’s a reason that Ubuntu’s developers went through the hassle of
making them available. These updates fix issues, some of which are security concerns that are already
being exploited as you read this.

To begin the process of installing security updates, the first step is to update your local repository index.
As we’ve discussed before, the way to do so is to run sudo apt update. This will instruct your server
to check all of its subscribed repositories to see whether any new packages were added or whether
any out-of-date packages were removed. Then, you can start the actual process.

There are two commands you can use to update packages. You can run either sudo apt upgrade or
sudo apt dist-upgrade.

The difference is that running apt upgrade will not remove any packages and is the safest to use.
However, this command won’t pull down any new dependencies either. Basically, the apt upgrade
command simply updates any packages on your server that have already been installed, without adding
or removing anything. Since this command won’t install anything new, this also means your server
will not have updated kernels installed either.

The apt dist-upgrade command will update absolutely everything available. It will make sure all
packages on your server are updated, even if that means installing a new package as a dependency
that wasn’t required before. If a package needs to be removed in order to satisfy a dependency, it will
do that as well. If an updated kernel is available, it will be installed. If you use this command, just
take a moment to look at the proposed changes before you agree to have it run, as it will allow you to
confirm the changes during the process.

Securing Your Server492

Generally speaking, the dist-upgrade variation should represent your end goal, but it’s not necessar-
ily where you should start. Updated kernels are important, since your distribution’s kernel receives
security updates just like any other package. All packages should be updated eventually, even if that
means something is removed because it’s no longer needed or something new ends up getting installed.

When you start the process of updating, it will look similar to the following:

Figure 21.2: Updating packages on an Ubuntu server

Before the update process actually starts, you’ll be given an overview of what it wants to do. In my
case, it wants to upgrade 11 packages. If you were to enter Y and then press Enter, the update process
would begin. At this point, I’ll need to leave the terminal window open; it’s actually dangerous to
close it in the middle of the update process. Closing the terminal window in the middle of a package
management task may result in corrupted or partially installed packages.

Assuming that this process finishes successfully, we can run the apt dist-upgrade command to
update the rest – specifically, the packages that were held back because they would’ve installed new
packages or removed existing ones. There weren’t any in my case, but in such a situation you may see
text indicating that some upgrades were held back, which is normal with apt upgrade. At that point,
you’ll run sudo apt dist-upgrade to install any remaining updates that didn’t get installed with the
first command.

In regard to updating the kernel, this process deserves some additional discussion. Some distributions
are very risky when it comes to updating the kernel. Arch Linux is an example of this, where only
one kernel is installed at any one time. Therefore, when that kernel gets updated, you really need to
reboot the machine so that it can use it properly (sometimes, various system components may have
difficulty in a case where you have a pending reboot after installing a new kernel).

Ubuntu, on the other hand, handles kernel upgrades very efficiently. When you update a kernel in
Ubuntu, it doesn’t replace the kernel your server is currently running on. Instead, it installs the up-
dated kernel alongside your existing one.

In fact, these kernels will continue to be stacked and none of them will be removed as new ones are
installed. When new versions of the Ubuntu kernel are installed, the GNU GRUB boot loader will be
updated automatically to boot the new kernel the next time you perform a reboot.

Chapter 21 493

Until you do, you can continue to run on your current kernel for as long as you need to, and you
shouldn’t notice any difference. The only real difference is the fact that you’re not taking advantage of
the additional security patches of the new kernel until you reboot, which you can do during your next
maintenance window. The reason this method of updating is great is that if you run into a problem
where the new kernel doesn’t boot or has some sort of issue, you’ll have a chance to press Esc at the
beginning of the boot process, where you’ll be able to browse a list of all of your installed kernels.
Using this list, you can choose between your previous (known, working) kernels and continue to use
your server as you were before you updated the kernel. This is a valuable safety net!

After you update the packages on your server, you may want to restart services in order to take advan-
tage of the new security updates. In the case of kernels, you would need to reboot your entire server
in order to take advantage of kernel updates, but other updates don’t require a reboot. Instead, if you
restart the associated service, you’ll generally be fine (if the update itself didn’t already trigger a restart
of a service). For example, if your DNS service (bind9) was updated, you would only need to execute
the following to restart the service:

sudo systemctl restart bind9

In addition to keeping packages up to date, it’s also important that you understand how to roll back an
updated package in a situation where something went wrong. You can recover from such a situation
by simply reinstalling an older version of a package manually. Previously downloaded packages are
stored in the following directory:

/var/cache/apt/archives

There, you should find the actual packages that were downloaded as a part of your update process. In
a case where you need to restore an updated package to a previously installed version, you can man-
ually install a package with the dpkg command. Generally, the syntax will be similar to the following:

sudo dpkg -i /path/to/package.deb

To be more precise, you would use a command such as the following to reinstall a previously down-
loaded package, using an older Linux kernel as an example:

sudo dpkg -i /var/cache/apt/archives/linux-image-5.15.0-30-
generic_5.15.0-30.31_amd64.deb

However, with the dpkg command, dependencies aren’t handled automatically, so if you are missing
a package that your target package requires as a dependency, the package will still be installed, but
you’ll have unresolved dependencies you’ll need to fix. You can try to resolve this situation with apt:

sudo apt -f install

The apt -f install command will attempt to fix your installed packages, looking for packages that are
missing (but are required by an installed package), and will offer to install the missing dependencies
for you. In a case where it cannot find a missing dependency, it will offer to remove the package that
requires the missing packages if the situation cannot be worked out any other way.

Securing Your Server494

Well, there you have it. At this point, you should be well on your way to not only installing packages but
keeping them updated as well. There’s also a feature in Ubuntu that you can utilize to take advantage
of the concept of live patching, which you can use to patch your server’s kernel automatically. That’s
what we’ll cover in the next section.

Automatically installing patches with the Canonical
Livepatch service
In the previous section, I mentioned that if your updates include an update to the kernel, you’ll need
to reboot your server for the new kernel to take effect. While this is generally true, Canonical offers a
Livepatch service for Ubuntu, which allows it to receive updates and have them applied without reboot-
ing. This is a game changer, as it takes care of keeping your running kernel patched without you having
to do anything, not even reboot. This is a massive benefit to security, as it gives you the benefits of the
latest security patches without the inconvenience of scheduling a restart of your servers right away.

However, the service is not free or included with Ubuntu by default. Even so, you can install the
Livepatch service on three of your servers without paying, so it’s still something you may want to
consider. You’re even able to utilize this service on the desktop version of Ubuntu if you’d like. Since
you can use this service for free on three servers, I see no reason why you shouldn’t benefit from this
on your most critical resources.

Even though you generally won’t need to reboot your server in order to take advantage of patches with
the Livepatch service, there may be some exceptions depending on the nature of the vulnerability.
There have been exploits in the past that required complex changes, and even servers subscribed to
this service still needed to reboot. This is the exception rather than the rule, though. Most of the time,
a reboot is simply not something you’ll need to worry about if you’re utilizing Livepatch. More often
than not, your server will have all patches applied and inserted right into the running kernel, which
is an amazing thing.

One important thing to note is that this doesn’t stop you from needing to install updates via apt. Live
patches are inserted right into the kernel, but they’re not permanent. You’ll still want to install all of
your package updates on a regular basis through the regular means. At the very least, live patches
will make it so that you won’t be in such a hurry to reboot. If an exploit is revealed on Monday but you
aren’t able to reboot your server until Sunday, it’s no big deal.

Since the Livepatch service requires a subscription, you’ll need to create an account in order to get
started using it. You can get started with this process at https://auth.livepatch.canonical.com/.

The process will involve having you create an Ubuntu One account (https://login.ubuntu.com/),
which is Canonical’s centralized login system. You’ll enter your email address, choose a password,
and then at the end of the process, you’ll be given a token to use with your Livepatch service, which
will be a string of random characters.

https://auth.livepatch.canonical.com/
https://login.ubuntu.com/

Chapter 21 495

Now that you have a token, you can decide on the three servers that are most important to you. On
each of those servers, you can run the following commands to get started:

sudo snap install canonical-livepatch
sudo canonical-livepatch enable <token>

Believe it or not, that’s all there is to it. With how amazing the Livepatch service is, you’d think it would
be a complicated process to set up. The most time-consuming part is registering for a new account,
as it only takes two commands to set this service up on a server. You can check the status of Livepatch
with the following command:

sudo canonical-livepatch status

Depending on the budget of your organization, you may decide that this service is worth paying for,
which will allow you to benefit from having it on more than three servers. It’s definitely worth con-
sidering. You’ll need to contact Canonical to inquire about additional support, should you decide to
explore that option.

At this point, we should switch gears and discuss some things we can do to better secure OpenSSH. I’ve
mentioned a few times throughout this chapter that OpenSSH is a common target for outside threat
actors, so in the next section, it’s time to take a closer look at this.

Securing OpenSSH
OpenSSH is a very useful utility; it allows us to configure our servers from a remote location as if we
were sitting in front of the console. In the case of cloud resources, it’s typically the only way to access
our servers. Considering the nature of OpenSSH itself (remote administration), it’s a very tempting
target for miscreants who are looking to cause trouble. If we simply leave OpenSSH unsecured, this
useful utility may be our worst nightmare.

Thankfully, configuring OpenSSH itself is very easy. However, the large number of configuration
options may be intimidating to someone who doesn’t have much experience tuning it. While it’s a
good idea to peruse the documentation for OpenSSH, in this section, we’ll take a look at the common
configuration options you’ll want to focus your attention on first.

The configuration file for OpenSSH itself is located at /etc/ssh/sshd_config, and we touched on
it in Chapter 10, Connecting to Networks. This is the file we’re going to focus on in this section, as the
configuration options I’m going to give you are to be placed in that file.

With each of the tweaks in this section, make sure you first look through the file in order to see whether
the setting is already there and change it accordingly. If the setting is not present in the file, add it.
After you make your changes, it’s important to restart the OpenSSH daemon:

sudo systemctl restart ssh

Go ahead and open this file in your editor, and we’ll go through some tweaks.

Securing Your Server496

One really easy tweak is to change the port number that OpenSSH listens on, which defaults to port
22. Since this is the first port that hackers will attempt, it makes sense to change it, and it’s a very
easy change to make. However, I don’t want you to think that just because you change the port for
OpenSSH, it’s magically hidden and cannot be detected. A persistent threat actor will still be able to
find the port by running a port scan against your server. However, with the change being so easy to
tweak, why not do it? To change it, simply look for the port number in the /etc/ssh/sshd_config file
and change it from its default of 22:

Port 65332

The only downsides I can think of in regards to changing the SSH port are that you’ll have to remember
to specify the port number when using SSH, and you’ll have to communicate the change to anyone
that uses the server. To specify the port, we use the -p option with the ssh command:

ssh -p 65332 myhost

If you’re using scp, you’ll need to use an uppercase P instead:

scp -P 65332 myfile myserver:/path/to/dir

Even though changing the port number won’t make your server bulletproof, we shouldn’t underestimate
the value of doing so. In a hypothetical example where an attacker is scanning servers on the inter-
net for an open port 22, they’ll probably skip your server and move on to the next. Only determined
attackers that specifically want to break into your server will scan other ports looking for it. This also
keeps your log file clean; you’ll see intrusion attempts only from miscreants doing aggressive port
scans, rather than random bots looking for open ports.

If your server is internet-facing, this will result in far fewer entries in the logs! OpenSSH logs connec-
tion attempts in the authorization log, located at /var/log/auth.log. Feel free to check out that log
file to see what typical logging looks like.

Another change that’s worth mentioning is which protocol OpenSSH listens for. Most versions of
OpenSSH available in repositories today default to Protocol 2. This is what you want. Protocol 2 is much
more secure than Protocol 1. You should never allow Protocol 1 in production under any circumstances.
Chances are you’re probably already using the default of Protocol 2 on your server, unless you changed
it for some reason. I mention it here just in case you have older servers still in production that are
defaulting to the older protocol. Nowadays, OpenSSH is always on Protocol 2 in any modern release
of a Linux distribution. If you do have an older server that’s still using Protocol 1, you can adjust that
by finding the following line in the /etc/ssh/sshd_config file:

Protocol 1

Switching OpenSSH to use Protocol 2 is as simple as changing the 1 on that line to 2, and then restart-
ing the OpenSSH server:

sudo systemctl restart ssh

Chapter 21 497

Next, I’ll give you two tweaks for the price of one. There are two settings that deal with which users
and groups are allowed to log in via SSH: AllowUsers and AllowGroups, respectively. By default, every
user you create is allowed to log in to your server via SSH. With regards to root, that’s actually not
allowed by default (more on that later). But each user you create is allowed in. However, only users
that must have access should be allowed in. There are two ways to accomplish this.

One option is to use AllowUsers. With the AllowUsers option, you can specifically set which users
can log in to your server. With AllowUsers present (which is not found in the config file by default),
your server will not allow anyone to use SSH that you don’t specifically call out with that option. You
can separate each user with a space:

AllowUsers larry moe curly

Personally, I find AllowGroups easier to manage. It works pretty much the same as AllowUsers, but
with groups. If present, it will restrict OpenSSH connections to users who are a member of this group.
To use it, you’ll first create the group in question (you can name it whatever makes sense to you):

sudo groupadd sshusers

Then, you’ll make one or more users a member of that group:

sudo usermod -aG sshusers myuser

Once you have added the group and made a user or two a member of that group, add the following to
your /etc/ssh/sshd_config file, replacing the sample groups with yours:

AllowGroups admins sshusers gremlins

It’s fine to use only one group. Just make sure you add yourself to the group before you log out; oth-
erwise, you’ll lock yourself out. I recommend you use only one or the other between AllowUsers and
AllowGroups. I think that it’s much easier to use AllowGroups, since you’ll never need to touch the
sshd_config file again; you’ll simply add or remove user accounts to and from the group to control
access. Just so you’re aware, AllowUsers overrides AllowGroups.

Another important option is PermitRootLogin, which controls whether or not the root user account
is able to make SSH connections. This should always be set to no. By default, this is usually set to
prohibit-password, which means key authentication is allowed for root while passwords for root
aren’t accepted. I don’t see any reason for this either. In my opinion, you should turn this off. Having
root being able to log in to your server over a network connection is never a good idea. This is always
the first user account attackers will try to use:

PermitRootLogin no

There is one exception to the no-root rule with SSH. Some providers of cloud servers, such as Linode,
may have you log in as root by default. This isn’t really typical, but some providers are set up that way.
In such a case, I recommend creating a regular user with sudo access, and then disallowing root login.

Securing Your Server498

My next suggestion is by no means easy to set up, but it’s worth it. By default, OpenSSH allows users
to authenticate via passwords. This is one of the first things I disable on all my servers. Allowing us-
ers to enter passwords to establish a connection means that attackers will also be able to brute-force
your server. If passwords aren’t allowed, then they can’t do that. What’s tricky is that before you can
disable password authentication for SSH, you’ll first need to configure and test an alternate means of
authenticating, which will usually be public key authentication. This is something we’ve gone over, in
Chapter 10, Connecting to Networks. Basically, you can generate an SSH key pair on your local worksta-
tion, and then add that key to the authorized_keys file on the server, which will allow you in without a
password. Again, refer to Chapter 10, Connecting to Networks, if you haven’t played around with this yet.

If you disable password authentication for OpenSSH, then public key authentication will be the only
way in. If someone tries to connect to your server and they don’t have the appropriate key, the server
will deny their access immediately. If password authentication is enabled and you have a key rela-
tionship, then the server will ask the user for their password if their key isn’t installed. In my view,
after you set up access via public key cryptography, you should disable password authentication (just
make sure you test it first):

PasswordAuthentication no

There you are – those are my most recommended tweaks for securing OpenSSH. There’s certainly more
where that came from, but those are the settings you’ll benefit from the most. In the next section, we’ll
add an additional layer, in the form of Fail2ban. With Fail2ban protecting OpenSSH and coupled with
the tweaks I mentioned in this section, attackers will have a tough time trying to break into your server.
For your convenience, here are all the OpenSSH configuration options I’ve covered in this section:

Port 65332
Protocol 2
AllowUsers larry moe curly
AllowGroups admins sshusers gremlins
PermitRootLogin no
PasswordAuthentication no

With OpenSSH better secured, we should be a bit more confident now when it comes to the security
of our server. However, each tweak or improvement we make to improve security only helps us so
much. The more protections we implement, the better. In the next section, we’ll explore Fail2ban,
which can greatly increase the security of our server.

Installing and configuring Fail2ban
Fail2ban, how I love thee! Fail2ban is one of those tools that once I learned how valuable it is, I won-
dered how I ever lived so long without it. Fail2ban is able to keep an eye on your log files, looking for
authentication failures. You can set the number of failures that are allowed from any given IP address,
and if there are more than the allowed number of failures, Fail2ban will block that individual’s IP
address. It’s highly configurable and can enhance the security of your server.

Chapter 21 499

Installing and configuring Fail2ban is relatively straightforward. First, install its package:

sudo apt install fail2ban

After installation, the fail2ban daemon will start up and be configured to automatically start at boot
time. Configuring fail2ban is simply a matter of creating a configuration file. But this is one of the
more interesting aspects of Fail2ban: you shouldn’t use its default config file. The default file is /etc/
fail2ban/jail.conf. The problem with this file is that it can be overwritten when you install security
updates, if those security updates ever include Fail2ban itself. To remedy this, Fail2ban also reads the
/etc/fail2ban/jail.local file, if it exists. It will never replace that file, and the presence of a jail.
local file will supersede the jail.conf file. The simplest way to get started is to make a copy of jail.
conf and save it as jail.local:

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

Next, I’ll go over some of the very important settings you should configure, so open up the /etc/
fail2ban/jail.local file you just copied in a text editor. The first configuration item to change is
located on or around line 92 and is commented out:

#ignoreip = 127.0.0.1/8 ::1

First of all, uncomment it. Then, you should add additional networks that you don’t want to be blocked
by Fail2ban. Basically, this will help prevent you from getting locked out in a situation where you
accidentally trigger Fail2ban. Fail2ban is relentless; it will block any service that meets its block cri-
teria, and it won’t think twice about it. This includes blocking you. To rectify this, add your company’s
network here, as well as any other IP address you never want to be blocked. Make sure to leave the
localhost IP intact:

Ignoreip = 127.0.0.1/8 ::1 192.168.1.0/24 192.168.1.245/24

In that example, I added the 192.168.1.0/24 network, as well as a single IP address of 192.168.1.245/24.
Add your networks to this line to ensure you don’t lock yourself out.

Next, line 101 includes the bantime option. This option pertains to how many seconds a host is banned
when Fail2ban blocks it. This option defaults to 10m, or 10 minutes:

bantime = 10m

Change this number to whatever you find reasonable, or just leave it as its default, which will also
be fine. If a host gets banned, it will be banned for this specific number of minutes, and then it will
eventually be allowed again.

Continuing, we have the maxretry setting:

maxretry = 5

This is specifically the number of failures that need to occur before Fail2ban takes action. If a service
it’s watching reaches the number set here, game over! The IP will be blocked for the number of min-
utes included in the bantime option.

Securing Your Server500

You can change this if you want to, if you don’t find 5 failures to be reasonable. The highest I would
set it to is 7, for those users on your network who insist they’re typing the correct password and they
type the same (wrong) thing over and over. Hopefully, they’ll realize their error before their seventh
attempt and won’t need to call the helpdesk.

Skipping ahead all the way down to line 272 or thereabouts, we have the Jails section. From here,
the config file will list several jails you can configure, which is basically another word for something
Fail2ban will pay attention to. The first is [sshd], which configures its protection of the OpenSSH
daemon. Look for this option underneath [sshd]:

port = ssh

port being equal to ssh basically means that it’s defaulting to port 22. If you’ve changed your SSH port,
change this to reflect whatever that port is. There are two such occurrences, one under [sshd] and
another underneath [sshd-ddos]:

port = 65332

Before we go too much further, I want to underscore the fact that we should test whether Fail2ban is
working after each configuration change we make. To do this, restart Fail2ban and then check its status:

sudo systemctl restart fail2ban
sudo systemctl status -l fail2ban

The status should always be active (running). If it’s anything else (such as failed), that means that
Fail2ban doesn’t like something in your configuration. Usually, that means that Fail2ban’s status will
reflect that it exited. So, as we go, make sure to restart Fail2ban after each change and make sure it’s
not complaining about something. The status command will show lines from Fail2ban’s log file for
your convenience.

Another useful command to run after restarting Fail2ban is the following:

sudo fail2ban-client status

The output from that command will show all the jails that you have enabled. If you enable a new jail
in the config file, you should see it listed within the output of that command.

So, how do you enable a jail? By default, all jails are disabled, except for the one for OpenSSH. To
enable a jail, place the following within its config block in the /etc/fail2ban/jail.local file:

enabled = true

If you want to enable the apache-auth jail, find its section, and place enabled = true right under-
neath its stanza. For example, apache-auth will look like the following after you add the enabled line:

[apache-auth]
enabled = true
port = http,https
logpath = %(apache_error_log)

Chapter 21 501

In that example, the enabled = true portion wasn’t present in the default file. I added it. Now that
I’ve enabled a new jail, we should restart fail2ban:

sudo systemctl restart fail2ban

Next, check its status to make sure it didn’t explode on startup:

sudo systemctl status -l fail2ban

Assuming all went well, we should see the new jail listed in the output of the following command:

sudo fail2ban-client status

On my test server, the output became the following once I enabled apache-auth:

Status
|- Number of jail: 2
 '- Jail list: apache-auth, sshd

If you enable a jail for a service you don’t have installed, Fail2ban may fail to start up. In my example,
I actually did have apache2 installed on that server before I enabled its jail. If I hadn’t, Fail2ban would
likely have exited, complaining that it wasn’t able to find log files for Apache. This is the reason why I
recommend that you test Fail2ban after enabling any jail. If Fail2ban decides it doesn’t like something,
or something it’s looking for isn’t present, it may stop. Then, it won’t be protecting you at all, which
is not good.

The basic order of operations for Fail2ban is to peruse the jail config file, looking for any jails you
may benefit from. If you have a daemon running on your server, there’s a chance that there’s a jail for
that. If there is, enable it and see whether Fail2ban breaks. If not, you’re in good shape. If it does fail
to restart properly, inspect the status output and check what it’s complaining about.

One thing you may want to do is add the enabled = true line to [sshd] and [sshd-ddos]. Sure, the
[sshd] jail is already enabled by default, but since it wasn’t specifically called out in the config file,
I don’t trust it. So you might as well add an enabled line to be safe. There are several jails you may
benefit from. If you are using SSL with Apache, enable [apache-modsecurity]. Also, consider enabling
[apache-shellshock] while you’re at it to potentially protect Apache from the Shellshock vulnerability.
If you’re running your own mail server and have Roundcube running, enable [roundcube-auth] and
[postfix]. There are a lot of default jails at your disposal!

Like all security applications, Fail2ban isn’t going to automatically make your server impervious to all
attacks, but it is a helpful additional layer you can add to your security regimen. When it comes to the
jails for OpenSSH, Fail2ban is worth its weight in gold, and that’s really the least you should enable. Go
ahead and give Fail2ban a go on your servers—just make sure you also add your own network to the
Ignoreip list that was covered earlier, in case you accidentally type your own SSH password incorrectly
too many times and potentially lock yourself out. Fail2ban doesn’t discriminate; it’ll block anyone.
Once you get it fully configured, I think you’ll agree that Fail2ban is a worthy ally for your servers.

Securing Your Server502

Earlier, I mentioned that each service that runs on your computer listening for connections is a
potential target. While it’s impossible to go over every service you could possibly run on your server
and how to secure it, we will want to consider securing our database server (if we have one) since
organizations typically store valuable data there. We’ll learn some methods we can utilize to better
secure MariaDB next.

MariaDB best practices for secure database servers
MariaDB, as well as MySQL, is a very useful resource to have at your disposal. However, it can also be
used against you if configured improperly. Thankfully, it’s not too hard to secure, but there are several
points of consideration to make regarding your database server when developing your security design.

The first point is probably obvious to most of you, and I have mentioned it before, but I’ll mention
it just in case. Your database server should not be reachable from the internet. I do understand that
there are some edge cases when developing a network, and certain applications may require access to
a MySQL database over the internet. However, if your database server is accessible over the internet,
miscreants will try their best to attack it and gain entry. If there’s any vulnerability in your version of
MariaDB or MySQL, they’ll most likely be able to hack into it.

In most organizations, a great way to implement a database server is to make it accessible by only
internal servers. This means that while your web server would obviously be accessible from the in-
ternet, its backend database should exist on a different server on your internal network and accept
communications only from the web server. If your database server is a VPS or cloud instance, it should
especially be configured to only accept communications from your web server, as VPS machines
are accessible via the internet by default. Therefore, it’s still possible for your database server to be
breached if your web server is also breached, but it would be less likely to be compromised if it resides
on a separate and restricted server.

Some VPS providers, such as DigitalOcean and Linode, feature local networking, which you can
leverage for your database server instead of allowing it to be accessible over the internet. If your VPS
provider features local networking, you should definitely utilize it and deny traffic from outside the
local network.

With regards to limiting which servers are able to access a database server, there are a few tweaks we
can use to accomplish this. First, we can leverage the /etc/hosts.allow and /etc/hosts.deny files.
With the /etc/hosts.deny file, we can stop traffic from certain networks or from specific services.
With /etc/hosts.allow, we allow the traffic. This works because IP addresses included in /etc/hosts.
allow override /etc/hosts.deny. So basically, if you deny everything in /etc/hosts.deny and allow
a resource or two in /etc/hosts.allow, you’re saying, deny everything, except resources I explicitly
allow from the /etc/hosts.deny file.

To make this change, we’ll want to edit the /etc/hosts.allow file first. By default, this file has no con-
figuration other than some helpful comments. Within the file, we can include a list of resources we’d
like to be able to access our server, no matter what. Make sure that you include your web server here,
and also make sure that you immediately add the IP address you’ll be using to SSH into the machine;
otherwise, you’ll lock yourself out once we edit the /etc/hosts.deny file.

Chapter 21 503

Here are some example hosts.allow entries, with a description of what each example rule does.

The first example rule allows a machine with an IP address of 192.168.1.50 to access the server:

ALL: 192.168.1.50

This rule allows any machine within the 192.168.1.0/24 network to access the server:

ALL: 192.168.1.0/255.255.255.0

In this rule, we have an incomplete IP address. This acts as a wildcard, which means that any IP ad-
dress beginning with 192.168.1 is allowed:

ALL: 192.168.1.

This rule allows everything. You definitely don’t want to do this:

ALL: ALL

We can also allow specific daemons. Here, I’m allowing OpenSSH traffic originating from any IP ad-
dress beginning with 192.168.1:

ssh: 192.168.1.

On your end, if you wish to utilize this security approach, add the resources on the database server
you’ll be comfortable accepting communications from. Make sure you at least add the IP address of
another server with access to OpenSSH, so you’ll have a way to manage the machine. You can also add
all your internal IP addresses with a rule similar to the previous examples. Once you have this set up,
we can edit the /etc/hosts.deny file.

The /etc/hosts.deny file utilizes the same syntax as /etc/hosts.allow. To finish this little exercise,
we can block any traffic not included in the /etc/hosts.allow file with the following rule:

ALL: ALL

The /etc/hosts.allow and /etc/hosts.deny files don’t represent a complete layer of security but
are a great first step in securing a database server, especially one that might contain sensitive user
or financial information. They’re by no means specific to MariaDB either, but I mention them here
because databases very often contain data that, if leaked, could potentially wreak havoc on your or-
ganization and even put someone out of business. A database server should only ever be accessible
by the application that needs to utilize it.

Another point of consideration is user security. We walked through creating database users in Chapter
13, Managing Databases. In that chapter, we walked through the MySQL commands for creating a user
as well as GRANT, performing both in one single command. This is the example I used:

GRANT SELECT ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY 'password';

What’s important here is that we’re allowing access to the mysampledb database by a user named
appuser. If you look closer at the command, we’re also specifying that this connection is allowed only
if it’s coming in from localhost. If we tried to access this database remotely, it wouldn’t be allowed.

Securing Your Server504

This is a great default. But you’ll also, at some point, need to access the database from a different
server. Perhaps your web server and database server are separate machines, which is a common
enterprise. You could do this:

GRANT SELECT ON mysampledb.* TO 'appuser'@'%' IDENTIFIED BY 'password';

However, in my opinion, this is a very bad practice. The % character in a MySQL GRANT command is
a wildcard, similar to * with other commands. Here, we’re basically telling our MariaDB or MySQL
instance to accept connections from this user, from any network. There is almost never a good reason
to do this. I’ve heard some administrators use the argument that they don’t allow external traffic from
their company firewall, so allowing MySQL traffic from any machine shouldn’t be a problem. Howev-
er, that logic breaks down when you consider that if an attacker does gain access to any machine in
your network, they can immediately target your database server. If an internal employee gets angry
at management and wants to destroy the database, they’ll be able to access it from their workstation.
If an employee’s workstation becomes affected by malware that targets database servers, it may find
your database server and try to brute-force it. I could go on and on with examples of why allowing
access to your database server from any machine is a bad idea. Just don’t do it!

If we want to give access to a specific IP address, we can do so with the following instead:

GRANT SELECT ON mysampledb.* TO 'appuser'@'192.168.1.50' IDENTIFIED BY
'password';

With the previous example, only a server or workstation with an IP address of 192.168.1.50 is allowed
to use the appuser account to obtain access to the database. That’s much better. You can, of course,
allow an entire subnet as well:

GRANT SELECT ON mysampledb.* TO 'appuser'@'192.168.1.% IDENTIFIED BY
'password';

Here, any IP address beginning with 192.168.1 is allowed. Honestly, I really don’t like allowing an
entire subnet. But depending on your network design, you may have a dozen or so machines that need
access. Hopefully, the subnet you allow is not the same subnet your users’ workstations use!

Finally, another point of consideration is security patches for your database server software. I know I
talk about updates quite a bit, but as I’ve mentioned, these updates exist for a reason. Developers don’t
release patches for enterprise software simply because they’re bored; these updates often patch real
problems that real people are taking advantage of right now as you read this. Install updates regularly.
I understand that updates on server applications can scare some people, as an update always comes
with the risk that it may disrupt business. But as an administrator, it’s up to you to create a rollout
plan for security patches, and ensure they’re installed in a timely fashion. Sure, it’s tough and often
has to be done after hours. But the last thing I want to do is read about yet another company where
the contents of their database server were leaked and posted freely online. A good security design
includes regular patching.

Now that our database server is more secure, there’s another topic worth diving into, and that is the
subject of implementing a firewall. There are several different firewall solutions out there, but UFW is a
great choice. It’s easy to set up, and quite effective. In the next section, I’ll go over how to implement it.

Chapter 21 505

Setting up a firewall
Firewalls are a very important aspect to include in your network and security design. Firewalls are
extremely easy to implement, but sometimes hard to implement well. The problem with firewalls is
that they can sometimes offer a false sense of security to those who aren’t familiar with the best ways
to manage them. Sure, they’re good to have, but simply having a firewall isn’t enough by itself.

The false sense of security comes when someone thinks that they’re protected just because a firewall
is installed and enabled, but they’re also often opening traffic from any network to internal ports.
Take into consideration the firewall that was introduced with Windows XP and enabled by default
with Windows XP Service Pack 2. Yes, it was a good step but users simply clicked the allow button
whenever something wanted access, which defeats the entire purpose of having a firewall. Windows
implements this better nowadays, but the false sense of security it created remains. Firewalls are not
a “set it and forget it” solution!

Firewalls work by allowing or disallowing access to a network port from other networks. Most good
firewalls block outside traffic by default. When a user or administrator enables a service, they open
a port for it. Then, that service is allowed in. This is great in theory, but where it breaks down is that
administrators will often allow access from everywhere when they open a port. If an administrator
does this, they may as well not have a firewall at all. If you need access to a server via OpenSSH, you
may open up port 22 (or whatever port OpenSSH is listening on) to allow it through the firewall. But
if you simply allow the port, it’s open for everyone else as well.

When configured properly, a firewall will enable access to a port only from specific places. For example,
rather than allowing port 22 for OpenSSH to your entire network, why not just allow traffic to port
22 from specific IP addresses or subnets? Now we’re getting somewhere! In my opinion, allowing all
traffic through a port is usually a bad idea, though some services actually do need this (such as web
traffic to your web server). If you can help it, only allow traffic from specific networks when you open
a port. This is where the use case for a firewall really shines.

In Ubuntu Server, Uncomplicated Firewall (UFW) is a really useful tool for configuring your firewall.
As the name suggests, it makes firewall management a breeze. To get started, install the ufw package:

sudo apt install ufw

By default, the UFW is inactive. This is a good thing, because we wouldn’t want to enable a firewall
until after we’ve configured it. The ufw package features its own command for checking its status:

sudo ufw status

Unless you’ve already configured your firewall, the status will come back as inactive.

With the ufw package installed, the first thing we’ll want to do is enable traffic via SSH, so we won’t get
locked out when we do enable the firewall:

sudo ufw allow from 192.168.1.156 to any port 22

Securing Your Server506

You can probably see from that example how easy UFW’s syntax is. With that example, we’re allowing
the 192.168.1.156 IP address access to port 22 via TCP as well as UDP. In your case, you would change
the IP address accordingly, as well as the port number if you’re not using the OpenSSH default port.
The any option refers to any protocol (TCP or UDP).

You can also allow traffic by subnet:

sudo ufw allow from 192.168.1.0/24 to any port 22

Although I don’t recommend this, you can allow all traffic from a specific IP to access anything on
your server. Use this with care, if you have to use it at all:

sudo ufw allow from 192.168.1.50

Now that we’ve configured our firewall to allow access via OpenSSH, you should also allow any other
ports or IP addresses that are required for your server to operate efficiently. If your server is a web
server, for example, you’ll want to allow traffic from ports 80 and 443. This is one of those few ex-
ceptions where you’ll want to allow traffic from any network, assuming your web server serves an
external page on the internet:

sudo ufw allow 80
sudo ufw allow 443

There are various other use patterns for the ufw command; refer to the main page (http://manpages.
ubuntu.com/manpages/focal/man8/ufw.8.html) for more. In a nutshell, these examples should en-
able you to allow traffic through specific ports, as well as via specific networks and IP addresses. Once
you’ve finished configuring the firewall, we can enable it:

sudo ufw enable
Firewall is active and enabled on system startup

Just as the output suggests, our firewall is active and will start up automatically whenever we reboot
the server.

The UFW package is basically an easy-to-use frontend to the iptables firewall, and it acts as the default
firewall for Ubuntu. The commands we’ve executed so far in this section trigger the iptables command,
which is a command that administrators can use to set up a firewall manually. A full walk-through of
iptables is outside the scope of this chapter, and it’s essentially unnecessary, since Ubuntu features
UFW as its preferred firewall administration tool and it’s the tool you should use while administering
a firewall on your Ubuntu server.

With a well-planned firewall implementation, you can better secure your Ubuntu Server installation
from outside threats. Preferably, each port you open should only be accessible from specific machines,
with the exception being servers that are meant to serve data or resources to external networks. Like
all security solutions, a firewall won’t make your server invincible, but it does represent an additional
layer that attackers would have to bypass in order to do harm.

http://manpages.ubuntu.com/manpages/focal/man8/ufw.8.html
http://manpages.ubuntu.com/manpages/focal/man8/ufw.8.html

Chapter 21 507

If your company stores sensitive information, it’s important to ensure the storage underneath that
data is encrypted. Next, we’re going to look at Linux Unified Key Setup (LUKS), which will help us
encrypt and decrypt disks.

Encrypting and decrypting disks with LUKS
An important aspect of security that many people don’t even think about is encryption. As I’m sure
you know, backups are essential for business continuity. If a server breaks down, or a resource stops
functioning, backups will be your saving grace. But what happens if your backup medium gets stolen
or somehow falls into the wrong hands? If your backup is not encrypted, then anyone will be able
to view its contents. Some data isn’t sensitive, so encryption isn’t always required. But anything that
contains personally identifiable information, company secrets, or anything else that would cause any
kind of hardship if leaked should be encrypted. In this section, I’ll walk you through setting up LUKS
encryption on an external backup drive.

Before we get into that though, I want to quickly mention the importance of full-disk encryption for
your distribution as well. Although this section is going to go over how to encrypt external disks, it’s
possible to encrypt the volume for your entire Linux installation as well. In the case of Ubuntu, full-
disk encryption is an option during installation, for both the server and workstation flavors. This is
especially important when it comes to mobile devices, such as laptops, which are stolen quite frequently.
If a laptop is planned to store confidential data that you cannot afford to have leaked out, you should
choose the option during installation to encrypt your entire Ubuntu installation. If you don’t, anyone
that knows how to boot a Live OS disc and mount a hard drive will be able to view your data. I’ve seen
unencrypted company laptops get stolen before, and it’s not a wonderful experience.

Anyway, back to the topic of encrypting external volumes. For the purpose of encrypting disks, we’ll
need to install the cryptsetup package:

sudo apt install cryptsetup

The cryptsetup utility allows us to encrypt and unencrypt disks. To continue, you’ll need an external
disk you can safely format, as encrypting the disk will remove any data stored on it. This can be an
external hard disk or a flash drive. Both can be treated the exact same way. In addition, you can use
this same process to encrypt a secondary internal hard disk attached to your virtual machine or server.
I’m assuming that you don’t care about the contents saved on the drive, because the process of setting
up encryption will wipe it.

If you’re using an external disk, use the fdisk -l command as root or the lsblk command to view
a list of hard disks attached to your computer or server before you insert it. After you insert your
external disk or flash drive, run the command again to determine the device designation for your
removable media.

In my examples, I used /dev/sdb, but you should use whatever designation your device was given.
This is important, because you don’t want to wipe out your root partition or an existing data partition!

First, we’ll need to use cryptsetup to format our disk:

sudo cryptsetup luksFormat /dev/sdb

Securing Your Server508

You’ll receive the following warning:

WARNING!
========
This will overwrite data on /dev/sdb irrevocably.
Are you sure? (Type uppercase yes):

Type YES and press Enter to continue. Next, you’ll be asked for the passphrase. This passphrase will
be required in order to unlock the drive. Make sure you use a good, randomly generated password
and that you store it somewhere safe. If you lose it, you will not be able to unlock the drive. You’ll be
asked to confirm the passphrase.

Once the command completes, we can format our encrypted disk. At this point, it has no filesystem,
so we’ll need to create one. First, open the disk with the following command:

sudo cryptsetup luksOpen /dev/sdb backup_drive

The backup_drive name can be anything you want; it’s just an arbitrary name you can refer to the disk
as. At this point, the disk will be attached to /dev/mapper/disk_name, where disk_name is whatever
you called your disk in the previous command (in my case, backup_drive). Next, we can format the
disk. The following command will create an ext4 filesystem on the encrypted disk:

sudo mkfs.ext4 -L "backup_drive" /dev/mapper/backup_drive

The -L option allows us to add a label to the drive, so feel free to change that label to whatever you
prefer to name the drive.

With the formatting out of the way, we can now mount the disk:

sudo mount /dev/mapper/backup_drive /media/backup_drive

The mount command will mount the encrypted disk located at /dev/mapper/backup_drive and attach
it to a mount point, such as /media/backup_drive in my example. The target mount directory must
already exist. With the disk mounted, you can now save data onto the device as you would any other
volume. When finished, you can unmount the device with the following commands:

sudo umount /media/backup_drive
sudo cryptsetup luksClose /dev/mapper/backup_drive

First, we unmount the volume just like we normally would. Then, we tell cryptsetup to close the
volume. To mount it again, we would issue the following commands:

sudo cryptsetup luksOpen /dev/sdb backup_drive
sudo mount /dev/mapper/backup_drive /media/backup_drive

The first of those commands should prompt you for your passphrase. If successful, you can use the
second of those commands to mount the volume.

Chapter 21 509

If we wish to change the passphrase, we can use the following command. The disk must not be mounted
or open in order for this to work:

sudo cryptsetup luksChangeKey /dev/sdb -S 0

The command will ask you for the current passphrase, and then the new one twice.

Keep in mind that you should absolutely be careful typing in the new passphrase, so that you don’t
lock yourself out of the drive.

That’s basically all there is to it. With the cryptsetup utility, you can set up your own LUKS-encrypted
volumes for storing your most sensitive information. If the disk ever falls into the wrong hands, it won’t
be as bad a situation as it would have been if the disk had been unencrypted. Breaking a LUKS-en-
crypted volume would take considerable effort that wouldn’t be feasible.

In the next section, we’ll explore how we can lock down sudo. Since sudo is an essential command
that gives us the ability to run tasks as other users, we’ll want to be sure to lock that down too.

Locking down sudo
We’ve been using the sudo command throughout the book. In fact, we took a deeper look at it in Chapter
2, Managing Users and Permissions. Therefore, I won’t go into too much detail regarding sudo here, but
some things bear repeating as sudo has a direct impact on security.

First and foremost, access to sudo should be locked down as much as possible. A user with full sudo
access is a threat, plain and simple. All it would take is for someone with full sudo access to make a
single mistake with the rm command to cause you to lose data or render your entire server useless.
After all, a user with full sudo access can do anything root can do (which is everything).

By default, the user you’ve created during installation will be made a member of the sudo group.
Members of this group have full access to the sudo command. Therefore, you shouldn’t make any
users a member of this group unless you absolutely have to. In Chapter 2, Managing Users and Permis-
sions, I talked about how to control access to sudo with the visudo command; refer to that chapter
for a refresher if you need it. In a nutshell, you can lock down access to sudo to specific commands,
rather than allowing your users to do everything. For example, if a user needs access to shut down
or reboot a server, you can give them access to perform those tasks (and only those tasks) with the
following setting:

charlie ALL=(ALL:ALL) /usr/sbin/reboot,/usr/sbin/shutdown

For the most part, if a user needs access to sudo, just give them access to the specific commands that
are required as part of their job. If a user needs access to work with removable media, give them sudo
access for the mount and umount commands. If they need to be able to install new software, give them
access to the apt suite of commands, and so on. The fewer permissions you give a user, the better.
This goes all the way back to the principle of least privilege that we went over near the beginning of
this chapter.

Securing Your Server510

Although most of the information in this section is not new to anyone who has already read Chapter
2, Managing Users and Permissions, sudo access is one of those things a lot of people don’t think about
when it comes to security. The sudo command with full access is equivalent to giving someone full
access to the entire server. Therefore, it’s an important thing to keep in mind when it comes to hard-
ening the security of your network.

Summary
In this chapter, we looked at the ways in which we can harden the security of our server. A single
chapter or book can never give you an all-inclusive list of all the security settings you could possibly
configure, but the examples we worked through in this chapter are a great starting point. Along the
way, we looked at the concepts of lowering your attack surface, as well as the principle of least priv-
ilege. We also looked into securing OpenSSH, which is a common service that many attackers will
attempt to use in their favor.

We also looked into Fail2ban, which is a handy daemon that can block other nodes when there are
a certain number of authentication failures. We also discussed configuring our firewall, using the
UFW utility. Since data theft is also unfortunately common, we covered encrypting our backup disks.

In the next chapter, we’ll take a look at troubleshooting our server when things go wrong.

Further reading
•	 Landscape documentation: https://learnlinux.link/ls-docs
•	 Fail2ban manual: https://learnlinux.link/f2b-man
•	 sshd_config file guide: https://learnlinux.link/sshd-config-doc
•	 Ubuntu CVE tracker: https://learnlinux.link/u-cve
•	 Password haystacks (find out how secure your password is):

https://learnlinux.link/haystack

•	 SECURITY NOW (a very informative security podcast): https://learnlinux.link/sn-podcast
•	 ShieldsUP! (a useful tool to see which ports your router has open):

https://learnlinux.link/grc-su

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://learnlinux.link/ls-docs
https://learnlinux.link/f2b-man
https://learnlinux.link/sshd-config-doc
https://learnlinux.link/u-cve
https://learnlinux.link/haystack
https://learnlinux.link/sn-podcast
https://learnlinux.link/grc-su
https://packt.link/LWaZ0

22
Troubleshooting Ubuntu Servers

So far, we’ve covered many topics surrounding Ubuntu Server and worked on some really fun projects.
We’ve set up web servers, built automation, and even created infrastructure in the cloud. As the
applications and services you’ve implemented age, your organization may depend on them more and
more. But what happens if something your organization relies on suddenly becomes unavailable?
What do you do when things don’t quite go according to plan?

While it’s impossible for us to account for every possible problem that may come up, there are some
common places to look for clues when you run into a problem. In this chapter, we’ll take a look at some
common starting points and techniques that you can utilize when it comes to troubleshooting issues
with your servers. Building solid troubleshooting skills is an important focus, and with the concepts
explored here, you’ll be well on your way.

In this chapter, we will cover:

•	 Evaluating the scope
•	 Conducting a root cause analysis
•	 Viewing system logs
•	 Tracing network issues
•	 Troubleshooting resource issues
•	 Diagnosing defective RAM

The first step with regards to troubleshooting is to analyze the problem and determine how critical a
problem it may be. In the next section, we’ll explore how to do just that.

Evaluating the scope
When a problem occurs within your servers or network, your systems will exhibit one or more
symptoms. Perhaps an application is much slower than normal, maybe users are unable to access
the network, or a server suffers from total failure. There are many problems that can come up at any
time, and it can be challenging to keep up.

Troubleshooting Ubuntu Servers512

Once you’ve identified the symptoms of the problem, the next goal is to identify the overall scope.
Essentially, this means determining (as best you can) where the problem is most likely to reside, and
how many systems and services are affected. Sometimes the root cause is obvious. For example, if none
of your computers are receiving an IP address from your DHCP server, then you’ll know straight away
to start investigating the logs on that particular server concerning its ability (or inability) to do the job
designated for it. In other cases, the cause may not be so obvious. Perhaps you have an application
that exhibits problems every now and then but isn’t something you can reliably reproduce. In that
case, it may take some digging before you know just how large the scope of the problem might be.
Sometimes, the culprit is the last thing you expect.

Each component on your network works together with other components, or at least that’s how it should
be. A network of Linux servers, just as with any other network, is a collection of services (daemons)
that complement and often depend upon one another. For example, DHCP assigns IP addresses to all
of your hosts, but it also assigns their default DNS servers as well. If your DNS server has encountered
an issue, then your DHCP server would essentially be assigning a non-working DNS server to your
clients. Identifying the problem space means that after you identify the symptoms, you’ll also work
toward reaching an understanding of how each component within your network contributes to (or is
affected by) the problem.

With regards to the scope, we identify how far the problem reaches, as well as how many users or
systems are affected by the issue. Perhaps just one user is affected, or an entire subnet. This will help
you determine the priority of the issue and decide whether this is something essential that you need
to fix now, or something that can wait until later. Often, prioritizing is half the battle; sometimes a
user will even be under the impression that their issues are more important than others. Use your
best judgment.

When identifying the scope, you’ll want to answer the following questions as best as you can:

•	 What are the symptoms of the issue?
•	 When did this problem first occur?
•	 Were there any changes made within the network around that time?
•	 Has this problem happened before? If so, what was done to fix it last time?
•	 Which servers or nodes are impacted by this issue?
•	 How many users are impacted?

If the problem is limited to a single machine, then a few really good places to start poking around is
to check who is logged in to the server and which commands have recently been entered. Quite often,
I’ve found the culprit just by checking the Bash history for logged-on users (or users that have recently
logged in). With each user account, there should be a .bash_history file in their home directory. Within
this file is a list of commands that were recently entered. Check this file and see if anyone modified
anything recently. I can’t tell you how many times this alone has led directly to the answer. And what’s
even better, sometimes the Bash history leads to the solution. If a problem has occurred before and
someone has already fixed it at some point in the past, chances are their efforts were recorded in the
Bash history, so you can see what the previous person did to solve the problem just by looking at it.

Chapter 22 513

To view the Bash history, you can either view the contents of the .bash_history file in a user’s home
directory, or you can simply execute the history command as that user.

Additionally, if you check who is currently logged into the server, you may be able to pinpoint if someone
is working on an issue already, or perhaps something they’re doing caused the issue in the first place. If
you enter the w command, you can see who is logged in to the server currently. In addition, you’ll also
see the IP address of the user that’s logged in when you run this command. Therefore, if you don’t know
who corresponds to a user account listed when you run the w command, you can check the IP address
in your DHCP server to find out who the IP address belongs to, so you can ask that person directly. In a
perfect world, other administrators will send out a departmental email when they work on something
to make sure everyone is aware. Unfortunately, many don’t do this. By checking the logged-in users
as well as their Bash history, you’re well on your way to determining where the problem originated.

After identifying the problem space and the scope, you can begin narrowing down the issue to help
find a cause. Sometimes, the culprit will be obvious. If a website stopped working and you noticed
that the Apache configuration on your web server was changed recently, you can attack the problem
by investigating the change and who made it.

If the problem is a network issue, such as users not being able to visit websites, the potential problem
space is much larger. Your internet gateway may be malfunctioning, your DNS or DHCP server may be
down, your internet provider could be having issues, or perhaps your accounting department simply
forgot to pay the internet bill. As long as you are able to determine a potential list of targets to focus
your troubleshooting on, you’re well on your way to finding the issue. As we go through this chapter,
I’ll talk about some common issues that can come up and how to deal with them.

Understanding the scope of the problem helps us understand just how severe it may be and the number
of systems and users impacted, and sometimes, investigating the scope can lead you to the root cause
of the problem. If you don’t already know the underlying cause, you can conduct a root cause analysis
to attempt to find the source of the problem. That’s what we’ll explore next.

Conducting a root cause analysis
Once you resolve a problem on your server or network, you’ll immediately revel in the awesomeness
of your troubleshooting skills. It’s a wonderful feeling to have fixed an issue, becoming the hero within
your technology department. But you’re not done yet. The next step is looking toward preventing this
problem from happening again. It’s important to look at how the problem started as well as steps you
can take in order to help stop the problem from occurring again. This is known as a root cause analysis.
A root cause analysis may be a report you file with your manager or within your knowledge-base system,
or it could just be a memo you document for yourself. Either way, it’s an important learning opportunity.

A good root cause analysis has several sides to the equation. First, it will demonstrate the events that
led to the problem occurring in the first place. Then, it will contain a list of steps that you’ve completed
to correct the problem. If the problem is something that could potentially recur, you would want to
include information about how to prevent it from happening again in the future.

Troubleshooting Ubuntu Servers514

The problem with a root cause analysis is that it’s rare that you can be 100 percent accurate. Sometimes,
the root cause may be obvious. For example, suppose a user named Bob deleted an entire directory
that contained files important to your company. If you log into the server and check the logs, you can
see that Bob not only logged into the server near the time of the incident, but his Bash history literally
shows him running the rm -rf /work/important-files command. At this point, the case is closed.
You figured out how the problem happened and who did it, and you can restore the files from your
most recent backup. But a root cause is usually not that cut and dry.

One example I’ve personally encountered was a pair of Virtual Machine (VM) servers that were
“fencing.” At a company I once worked for, our Citrix-based VM servers (which were part of a cluster)
both went down at the same time, taking every Linux VM down with them. When I attached a monitor
to them, I could see them both rebooting over and over. After I got the servers to settle down, I started
to investigate deeper. I read in the documentation for Citrix XenServer that you should never install
a cluster of anything less than three machines because it can create a situation exactly like the one
I experienced. We only had two servers in that cluster, so I concluded that the servers were set up
improperly and the company would need a third server if they wanted to cluster them.

The problem though is that this root cause analysis wasn’t 100 percent perfect. Were the servers having
issues because they needed a third server? The documentation did mention that three servers were
a minimum, but there’s no way to know for sure that was the reason the problem started. However,
not only was I not watching the servers when it happened, but I also wasn’t the individual who set
them up; that person had already left the company. There was no way I could reach an absolute
conclusion, but my root cause analysis was sound in the sense that it was the most likely explanation
(that we weren’t using best practices). Someone could counter my root cause analysis with “but the
servers were running fine that way for several years.” True, but nothing is absolute when dealing with
technology. Sometimes, you never really know. The only thing you can do is make sure everything is
set up properly according to the guidelines set forth by the manufacturer.

A good root cause analysis is as sound in logic as it can be, though not necessarily bulletproof. Correlating
system events to symptoms is often a good first step but is not necessarily perfect. After investigating
the symptoms, solving the issue, and documenting what you’ve done to rectify it, sometimes the root
cause analysis writes itself. Other times, you’ll need to read the documentation and ensure that the
configuration of the server or daemon that failed was implemented along with best practices. In a
worst-case scenario, you won’t really know how the problem happened or how to prevent it, but it
should still be documented in case other details come to light later. And without documentation, you’ll
never gain anything from the situation.

A root cause analysis should include details such as the following:

•	 A description of the issue
•	 Which application or piece of hardware encountered a fault

Chapter 22 515

•	 The date and time the issue was first noticed
•	 What you found while investigating the issue
•	 What you’ve done to resolve the issue
•	 What events, configurations, or faults caused the issue to happen

A root cause analysis should be used as a learning experience. Depending on what the issue was, it
may serve as an example of what not to do, or what to do better. In the case of my VM server fiasco,
the moral of the story was to follow best practices from Citrix and use three servers for the cluster
instead of two. Other times, the end result may be another technician not following proper directives
or making a mistake, which is unfortunate. In the future, if the issue were to happen again, you’ll be
able to look back and remember exactly what happened last time and what you did to fix it. This is
valuable, if only because we’re all human and prone to forgetting important details after a time. In
an organization, a root cause analysis is valuable to show stakeholders that you’re able to not only
address a problem but are reasonably able to prevent it from happening again.

Often, log files are a great place to find clues, as quite a bit of information surrounding system and
application events are stored there. In the next section, we’ll explore log files in more detail.

Viewing system logs
If you’re having trouble finding the root cause, or you just want more information regarding a problem
that occurred, consider looking through log files. Linux has great logging capabilities, and many of
the applications you may be running are writing log files as events happen. If there’s an issue, you
may be able to find information about it within an application’s logs.

There are two primary methods of viewing logs. Historically, for most of Ubuntu’s life, you could
simply inspect the log files that are stored within the /var/log directory. The files contained within
that directory are standard files and directories, so you can use commands you’ve used in the past
to view the contents of text files to view the contents of the log files within the /var/log directory as
well. This method of viewing log files is slowly being aged out; however, the majority of applications
still store their log files within that directory, even today.

The newer method of viewing logging information for an application is to use the journalctl
command. This command is part of systemd, and it’s dedicated to the purpose of viewing logs. To
use the journalctl command to check the status of a running service, you provide it the -u option,
along with the name of a service you’d like to check:

journalctl -u ssh

Troubleshooting Ubuntu Servers516

With that example, we’re attempting to view logging information for the ssh service:

Figure 22.1: Viewing logging information via the journalctl command

The -u option is required and tells the journalctl command that you’d like to check on a service. So in
the previous example, we provided ssh as an argument for what we wanted to find logging information
on. The name of the unit (or service) will be the same as it is when you’re starting, stopping, or restarting
a service with the systemctl command. I recommend making the journalctl command your first
consideration when checking logging information on a Linux system.

However, not all services log information via journalctl, so understanding the legacy approach to
viewing log files is also important. Inside the /var/log directory, you’ll see a handful of logs you can
view, which differs from server to server depending on which applications are installed. In quite a few
cases, an installed application will create its own log file somewhere within /var/log, either in a log
file or a log file within a subdirectory of /var/log. For example, once you install Apache, it will create
log files in the /var/log/apache2 directory, and looking through those logs may give you a hint as to
what may be going on if the problem is related to your web server. These are known as Application
Logs, which are basically log files created by an application and not the distribution. There are also
System Logs, which are the log files created by the distribution and allow you to view system events.

If you also add the -f option in addition to the -u option, the output will continue to scroll as
new information is added to the logs for the particular service you’re checking. This is very
useful if you want to follow along with what’s going on with a service as new events occur.

Chapter 22 517

Viewing a log file stored within the /var/log directory can be done in several ways. One way is to use
the cat command along with the path and filename of a log file. For example, the Apache access log
can be viewed with the following command:

cat /var/log/apache2/access.log

Some log files are restricted and need root privileges in order to access them. If you get a permission
denied error when attempting to view a log, use sudo in front of any of the commands in this section
to view the file.

One problem with the cat command is that it will print out the entire file, no matter how big it is. It
will scroll by your terminal and if the file is large, you won’t be able to see all of it. In addition, if your
server is already taxed when it comes to performance, using cat can actually tie up the server for a
bit in a case where the log file is massive. This will cause you to lose control of your shell until the file
stops printing. You can press Ctrl + c to stop printing the log file, but the server may end up being too
busy to respond to Ctrl + c and show the entire file anyway.

Another method is to use the tail command. By default, the tail command shows you the last ten
lines of a file:

tail /var/log/apache2/access.log

If you wish to see more than the last ten lines, you can use the -n option to specify a different amount.
To view the last 100 lines, we would use the following:

tail -n 100 /var/log/apache2/access.log

Perhaps one of the most useful features of the tail command is the -f option, which allows you to
follow a log file. Basically, this means that as entries are written to the log file, it will scroll by in front
of you. It’s close to watching the log file in real time:

tail -f /var/log/apache2/access.log

Once you start using the follow option, you’ll wonder how you ever lived without it. If you’re having
a specific problem that you are able to reproduce, you can watch the log file for that application and
see the log entries as they appear while you’re reproducing the issue. In the case of a DHCP server not
providing IP addresses to clients, you can view the output of the /var/log/syslog file (the isc-dhcp-
server daemon doesn’t have its own log file), and you can see any errors that come up as your clients
try to re-establish their DHCP lease, allowing you to see the problem as it is happening.

Another useful command for viewing logs is less. The less command allows you to scroll through
a log file with the page up and page down keys on your keyboard, which makes it more useful for
viewing log files than the cat command. You can press q to exit the file:

less /var/log/apache2/access.log

So now that you know a few ways in which you can view these files, which files should you inspect?
Unfortunately, there’s no one rule, as each application handles its logging differently. Some daemons
have their own log file stored somewhere in /var/log.

Troubleshooting Ubuntu Servers518

Therefore, a good place to check is in that directory, to see if there is a log file with the name of the
daemon. Some daemons don’t even have their own log file and will use /var/log/syslog instead.
You may try viewing the contents of the file while using grep to find messages related to the daemon
you’re troubleshooting. In regard to the isc-dhcp-server daemon, the following would narrow down
the syslog to messages from that specific daemon:

cat /var/log/syslog | grep dhcp

While troubleshooting security issues, the log file you’ll definitely want to look at is the Authorization
Log, located at /var/log/auth.log. You’ll need to use the root account or sudo to view this file. The
authorization log includes information regarding authentication attempts to the server, including
logins from the server itself, as well as logins over OpenSSH. This is useful for several reasons, among
them the fact that if something really bad happens on your server, you can find out who logged in to
the server around that time. In addition, if you or one of your users is having trouble accessing the
server via OpenSSH, you may want to look at the authorization log for clues, as additional information
for OpenSSH failures will be logged there. Often, the ssh command may complain about permissions
of key files not being correct, which would give you an answer as to why public key authentication
stopped working, as OpenSSH expects specific permissions for its files. For example, the private key
file (typically /home/<user>/.ssh/id_rsa) should not be readable or writable by anyone other than its
owning user. You’d see errors within /var/log/auth.log mentioning such a thing if that were the case.

Another use case for checking /var/log/auth.log is for security, as a high number of login attempts
may indicate an intrusion attempt. (Hopefully, you have Fail2ban installed, which we went over in the
last chapter.) An unusually high number of failed password attempts may indicate someone trying
to log in to the server by brute force. That would definitely be a cause for concern, and you’d want to
block their IP address immediately.

The System Log, located in /var/log/syslog, contains logging information for quite a few different
things. It’s essentially the Swiss Army knife of Ubuntu’s logs. If a daemon doesn’t have its own log file,
chances are its logs are being written to this file. In addition, information regarding cron jobs will
be written here, which makes it a candidate to check when a cron job isn’t being executed properly.
The dhclient daemon, which is responsible for grabbing an IP address from a DHCP server, is also
important.

You’ll be able to see from dhclient events within the system log when an IP address is renewed, and
you can also see messages relating to failures if it’s not able to obtain an IP address. Also, the systemd
init daemon itself logs here, which allows you to see messages related to server startup as well as
applications it’s trying to run.

Another useful log is the /var/log/dpkg.log file, which records log entries relating to installing and
upgrading packages. If a server starts misbehaving after you roll out updates across your network,
you can view this log to see which packages were recently updated. This log will not only give you a
list of updated or installed packages, but also a timestamp from when the installation occurred. If
a user installed an unauthorized application, you can correlate this log to the authentication log to
determine who logged in around that time, and then you can check that user’s Bash history to confirm.

Chapter 22 519

Often, log files will get rotated after some time by a utility known as logrotate. Inside the /var/log
directory, you’ll see several log files with a .gz extension, which means that the original log file was
compressed and renamed, and a new log file was created in its place. For example, you’ll see the
syslog file for the system log in the /var/log directory, but you’ll also see files named with a number
and a .gz extension as well, such as syslog.2.gz. These are compressed logs. Normally, you’d view
these logs by uncompressing them and then opening them via any of the methods mentioned in this
section. An easier way to do so is with the zcat command, which allows you to view compressed files
immediately:

zcat /var/log/syslog.2.gz

There’s also zless, which serves a similar purpose as the less command.

Another useful command for checking logging information is dmesg. Unlike other log files, dmesg
is literally its own command, and you can execute it from anywhere in the filesystem. The dmesg
command allows you to view log entries from the Linux kernel’s ring buffer, which can be very useful
when troubleshooting hardware issues (such as seeing which disks were recognized by the kernel).
When troubleshooting hardware, the system log is also helpful, but using the dmesg command may
be a good place to check as well.

As I mentioned earlier, on an Ubuntu system, there are two types of log files, system logs and application
logs. System logs, such as auth.log and dpkg.log, detail important system events and aren’t specific
to any one particular application. Application logs become installed when you install their parent
packages, such as Apache or MariaDB. Application logs create log entries into their own log file.

Some daemons you install will not create their own application log, such as isc-dhcp-server. Since
there’s no general rule when it comes to which applications log is where, the first step in finding a
log file is to see if the application you want log entries from creates its own log file. If not, it’s likely
using a system log.

When faced with a problem, it’s important to practice viewing log files at the same time as you try
and reproduce the problem. Using follow mode with tail (tail -f) works very well for this, as you
can watch the log file generate new entries as you try and reproduce the issue. This technique works
very well in almost any situation where you’re dealing with a misbehaving daemon. This technique
can also help narrow down hardware issues. For example, I once dealt with an Ubuntu system where
when I plugged in a flash drive, nothing happened. When I followed the log as I inserted and removed
the flash drive, I saw the system log update and recognize each insertion and removal. So clearly, the
Linux kernel itself saw the hardware and was prepared to use it. This helped me narrow down the
problem to being that the desktop environment I was using wasn’t updating to show the inserted flash
drive, but my hardware and USB ports were operating perfectly fine. With one command, I was able
to determine that the issue was a software problem and not related to hardware.

As you can see, Ubuntu contains very helpful log files that will aid you in troubleshooting your servers.
Often, when you’re faced with a problem, viewing relevant log entries and then conducting a Google
search regarding them will result in a useful answer, or at least bring you to a bug report to let you
know the problem isn’t just limited to you or your configuration.

Troubleshooting Ubuntu Servers520

Hopefully, your search results will lead you right to the answer, or at least to a workaround. From
there, you can continue to work through the problem until it is solved.

What about network issues? Tracking down the root cause of an issue on the network can be especially
challenging, but it’s not as difficult as it may seem. In the next section, we’ll take a look at a few ways
you can trace network issues.

Tracing network issues
It’s amazing how important TCP/IP networking is to the world today. Of all the protocols in use in
modern computing, it’s by far the most widespread. But it’s also one of the most annoying situations
to figure out when it’s not working well. Thankfully, Ubuntu features really handy utilities you can
use in order to pinpoint what’s going on.

First, let’s look at connectivity. After all, if you can’t connect to a network, your server is essentially
useless. In most cases, Ubuntu recognizes just about all network cards without fail, and it will
automatically connect your server or workstation to your network if it is within reach of a DHCP server.

While troubleshooting, get the obvious stuff out of the way first. The following may seem like a no-
brainer, but you’d be surprised how often one can miss something obvious. I’m going to assume
you’ve already checked to make sure network cables are plugged in tight on both ends. Another aspect
regarding cabling is that sometimes network cables themselves develop faults and need to be replaced.
You should be able to use a cable tester and get a clean signal through the cable.

Routing issues can sometimes be tricky to troubleshoot, but by testing each destination point one by
one, you can generally see where the problem lies. Typical symptoms of a routing issue may include
being unable to access a device within another subnet, or perhaps not being able to get out to the
internet, despite being able to reach internal devices. To investigate a potential routing issue, first,
check your routing table. You can do so with the ip route command. This command will print your
current routing table information:

Figure 22.2: Viewing the routing table on an Ubuntu server

In this example, you can see that the default gateway for all traffic is 10.10.10.1. This is the first entry
on the table, which tells us that all traffic to the destination 0.0.0.0 (which is everything) leaves via
10.10.10.1. As long as ICMP traffic isn’t disabled, you should be able to ping this default gateway, and
you should be able to ping other nodes within your subnet as well.

To start troubleshooting a routing issue, you would use the information shown after printing your
routing table to conduct several ping tests. First, try to ping your default gateway. If you cannot, then
you’ve found the issue. If you can, try running the traceroute command.

Chapter 22 521

This command isn’t available by default, but all you’ll have to do is install the traceroute package, so
hopefully, you have it installed on the server. If you do, you can run traceroute against a host, such
as an external URL, to find out where the connection drops. The traceroute command should show
every hop between you and your target. Each “hop” is basically another default gateway. You traverse
through one gateway after another until you ultimately reach your destination. With the traceroute
command, you can see where the chain stops. In all likelihood, you’ll find that perhaps the problem
isn’t even on your network, but perhaps your internet service provider is where the connection drops.

DNS issues don’t happen very often, but by using a few tricks, you should be able to resolve them.
Symptoms of DNS failures will usually result in a host being unable to access internal or external
resources by name.

Knowing whether the problem is with internal or external hosts (or both) should help you determine
whether it’s your DNS server that’s the problem, or perhaps the DNS server at your ISP.

The first step in pinpointing the source of DNS woes is to ping a known IP address on your network,
preferably the default gateway. If you can ping it, but you can’t ping the gateway by name, then you
probably have a DNS issue. You can confirm a potential DNS issue by using the nslookup command
against the domain, such as this:

nslookup myserver.local

In addition, make sure you try and ping external resources as well, such as a website. This will help
you narrow down the scope of the issue.

You will also want to know which DNS server your host is sending queries to. In the past, finding out
which DNS server was assigned to your host was as simple as inspecting the contents of /etc/resolv.
conf. However, nowadays, this file will often refer to a local resolver instead and won’t reveal the
actual server requests are being sent to. To find out the real DNS server that’s assigned to your host,
the following command will do the trick:

resolvectl status

Are they what you expect? If not, you can temporarily fix this problem by removing the incorrect
name server entries from this file and replacing them with the correct IP addresses. The reason I
suggest this as a temporary fix and not a permanent one is because the next thing you’ll need to do is
investigate how the invalid IP addresses got there in the first place. Normally, these are assigned by
your DHCP server. As long as your DHCP server is sending out the appropriate name server list, you
shouldn’t run into this problem. If you’re using a static IP address, then perhaps there’s an error in
your Netplan config file.

A useful method of pinpointing DNS issues in regard to being unable to resolve external sites is to
temporarily switch your DNS provider on your local machine. Normally, your machine is going to
use your external DNS provider, such as the one that comes from your ISP. Your external DNS server
is something we went through setting up in Chapter 11, Setting Up Network Services, specifically the
forwarders section of the configuration for the bind9 daemon. The forwarders used by the bind9
daemon are where it sends traffic if it isn’t able to resolve your request based on its internal list of hosts.

Troubleshooting Ubuntu Servers522

You could consider bypassing this by changing your local workstation’s DNS name servers to Google’s,
which are 8.8.8.8 and 8.8.4.4. If you’re able to reach the external resource after switching your
name servers, you can be reasonably confident that your forwarders are the culprit.

I’ve actually seen situations in which a website has changed its IP address but the ISP’s DNS servers
didn’t get updated quickly enough, causing some clients to be unable to reach a site they need to perform
their job. Switching everyone to alternate name servers (by adjusting the forwarders option, as we
did in Chapter 11, Setting Up Network Services) was the easiest way they could work around the issue.

Some additional tools to consider while checking your server’s ability to resolve DNS entries are dig
and nslookup. You should be able to use both commands to test your server’s DNS settings. Both
commands are used with a hostname or domain name as an option. The dig command will present
you with information regarding the address (A) record of the DNS zone file responsible for the IP
address or domain. The host command should return the IP address of the host you’re trying to reach.
Here’s some example output:

Figure 22.3: Output of the dig and host commands

Hardware support is also critical when it comes to networking. If the Linux kernel doesn’t support your
network hardware, then you’ll likely run into a situation where the distribution doesn’t recognize or
do anything when you insert a network cable, or in the case of wireless networking, doesn’t show any
nearby networks despite there being one or more. Unlike the Windows platform, hardware support is
generally baked right into the kernel when it comes to Linux. While there are exceptions to this, the
Linux kernel shipped with a distribution typically supports hardware the same age as itself or older.

Chapter 22 523

In the case of Ubuntu 22.04 LTS (which was released in April 2022), it’s able to support hardware
released as of the beginning of 2022 and older. Future releases of Ubuntu Server will publish hardware
enablement updates, which will allow Ubuntu Server 22.04 to support newer hardware and chip sets
once they come out. Typically, Ubuntu will release several point releases during the life of a supported
distribution, such as 22.04.1, 22.04.2, and so on. As long as you’re using the latest one, you’ll have
access to the latest hardware support that Ubuntu has made available at the time.

In other cases, hardware support may depend on external kernel modules. In the case of a missing
hardware driver, the first thing you should try when faced with network hardware that’s not recognized
is to look up the hardware using a search engine. Typically the search term <hardware name> Ubuntu
will do the trick. But what do you search for? To find out the hardware string for your network device,
try the lspci command:

lspci | grep -i net

The lspci command lists hardware connected to your server’s PCI bus. Here, we’re using the command
with a case insensitive grep search for the word net:

lspci |grep -i net

This should return a list of networking components available on your server. On my machine, for
example, I get the following output:

01:00.1 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411
PCI Express Gigabit Ethernet Controller (rev 12)
02:00.0 Network controller: Intel Corporation Wireless 8260 (rev 3a)

As you can see, I have a wired and wireless network card on this machine. If one of them wasn’t working,
I could search online for information by searching for the hardware string and the keyword Ubuntu,
which should give me results pertaining to my exact hardware. If a package is required to be installed,
the search results will likely give me some clues as to what package I need to install.

Without having network access though, the worst-case scenario is that I may have to download the
package from another computer and transfer it to the server via a flash drive. That’s certainly not a
fun thing to need to do, but it does work if the latest Ubuntu installation media doesn’t yet offer full
support for your hardware.

Another potential problem point is DHCP. When it works well, DHCP is a wonderfully magical thing.
When it stops working, it can be frustrating. But generally, DHCP issues often end up being a lack of
available IP addresses, the DHCP daemon (isc-dhcp-server) not running, an invalid configuration,
or hosts that have clocks that are out of sync (all servers should have the ntp package installed).

If you have a server that is unable to obtain an IP address via DHCP and your network utilizes a Linux-
based DHCP server, check the system log (/var/log/syslog) for events related to dhcpd. Unfortunately,
there’s no command you can run that I’ve ever been able to find that will print how many IP address
leases your DHCP server has remaining, but if you run out, chances are you’ll see log entries related
to an exhausted pool in the system log. In addition, the system log will also show you attempts from
your nodes to obtain an IP address as they attempt to do so. Feel free to use tail -f against the system
log to watch for any events related to DHCP leases.

Troubleshooting Ubuntu Servers524

In some cases, a lack of DHCP leases being available can come down to having a very generous lease
time enabled. Some administrators will give their clients up to a week for the lease time, which is
generally unnecessary. A lease time of one day is fine for most networks, but ultimately, the lease
time you decide on is up to you. In Chapter 11, Setting Up Network Services, we looked at configuring
our DHCP server, so feel free to refer to that chapter if you need a refresher on how to configure the
isc-dhcp-server daemon.

Although it’s probably not the first thing you’ll think of while facing DHCP issues, hosts having out-of-
sync clocks can actually contribute to the problem. DHCP requests are timestamped on both the client
and the server, so if the clock is off by a large degree on one, the timestamps will be off as well, causing
the DHCP server to become confused. Surprisingly, I’ve seen this come up fairly often. I recommend
standardizing NTP across your network as early on as you can. DHCP isn’t the only service that suffers
when clocks are out of sync; file synchronization utilities also require accurate time. If you ensure
NTP is installed on all of your clients and it’s up to date and working, you should be in good shape.
Using configuration management utilities such as Ansible to ensure NTP is not only configured but
is running properly on all the machines in your network will only benefit you.

Of course, there are many things that can go wrong when it comes to networking, but the information
here should cover the majority of issues. In summary, troubleshooting network issues generally revolves
around ping tests. Trying to ping your default gateway, tracing failed endpoints with traceroute, and
troubleshooting DNS and DHCP will take care of a majority of issues. Then again, faulty hardware such
as failed network cards and bad cabling will no doubt present themselves as well.

Our servers utilize storage, CPU, memory, and other resources to provide us with value and serve our
clients. In the next section, we’ll take a closer look at how to check those resources.

Troubleshooting resource issues
I don’t know about others, but it seems that a majority of my time troubleshooting servers is usually
spent pinpointing resource issues. By resources, I’m referring to CPU, memory, disk, input/output,
and so on. Generally, issues come down to a user storing too many large files, a process going haywire
that consumes a large amount of CPU, or a server running out of memory. In this section, we’ll go
through some of the common things you’re likely to run into while administering Ubuntu servers.

First, let’s revisit topics related to storage. In Chapter 9, Managing Storage Volumes, we went over
concepts related to this already, and many of those concepts also apply to troubleshooting as well.
Therefore, I won’t spend too much time on those concepts here, but it’s worth a refresher in regard
to troubleshooting storage issues. First, whenever you have users that are complaining about being
unable to write new files to the server, the following two commands are the first you should run. You
are probably already well aware of these, but they’re worth repeating:

df -h
df -i

The first df command variation gives you information regarding how much space is used on a drive,
in a human-readable format (the -h option), which will print the information in terms of megabytes
and gigabytes.

Chapter 22 525

The -i option in the second command gives you information regarding in-use and available inodes.
The reason you should also run this is that on a Linux system, it can report storage as full even if
there’s plenty of free space. But if there are no remaining inodes, it’s the same as being full, but the
first command wouldn’t show the usage as 100 percent when no inodes are free. Usually, the number
of inodes a storage medium has available is extremely generous, and the limit is hard to hit. However,
if a service is creating new log files over and over every second, or a mail daemon grows out of control
and generates a huge backlog of undelivered mail, you’d be surprised how quickly inodes can empty out.

Of course, once you figure out that you have an issue with full storage, the next logical question becomes,
what is eating up all my free space? The df commands will give you a list of storage volumes and
their sizes, which will tell you at least which disk or partition to focus your attention on. My favorite
command for pinpointing storage hogs, as I mentioned in Chapter 9, Managing Storage Volumes, is the
ncdu command. While not installed by default, ncdu is a wonderful utility for checking to see where
your storage is being consumed the most. If run by itself, ncdu will scan your server’s entire filesystem.
Instead, I recommend running it with the -x option, which will limit it to a specific folder as a starting
point. For example, if the /home partition is full on your server, you might want to run the following
to find out which directory is using the most space:

sudo ncdu -x /home

The -x option will cause ncdu to not cross filesystems. This means if you have another disk mounted
within the folder you’re scanning, it won’t touch it. With -x, ncdu is only concerned with the target
you give it.

If you aren’t able to utilize ncdu, there’s also the du command, which takes some extra work. The du
-h command, for example, will give you the current usage of your current working directory, with
human-readable numbers. It doesn’t traverse directory trees by default like ncdu does, so you’d need
to run it on each subdirectory until you manually find the directory that’s holding the most files. A
very useful variation of the du command, nicknamed ducks, is the following. It will show you the top
15 largest directories in your current working directory:

du -cksh * | sort -hr | head -n 15

Another issue with storage volumes that can arise is to do with filesystem integrity. Most of the time,
these issues only seem to come up when there’s an issue with power, such as a server powering off
unexpectedly. Depending on the server and the formatting you’ve used when setting up your storage
volumes (and several other factors), power issues are handled differently from one installation to
another. In most cases, a filesystem check (fsck) will happen automatically during the next boot. If it
doesn’t, and you’re having odd issues with storage that can’t be explained, a manual filesystem check
is recommended. Scheduling a filesystem check is actually very easy:

sudo touch /forcefsck

The previous command will create an empty file, forcefsck, at the root of the filesystem. When the
server reboots and it sees this file, it will trigger a filesystem check on that volume and then remove
the file.

Troubleshooting Ubuntu Servers526

If you’d like to check a filesystem other than the root volume, you can create the forcefsck file
elsewhere. For example, if your server has a separate /home partition, you could create the file there
instead to check that volume:

sudo touch /home/forcefsck

The filesystem check will usually complete fairly quickly unless there’s an issue it needs to fix.
Depending on the nature of the problem, the issue could be repaired quickly, or perhaps it will take
a while. I’ve seen some really bad integrity issues that have taken over four hours to fix, but I’ve seen
others fixed in a matter of seconds. Sometimes it will finish so quickly that it will scroll by so fast
during boot that you may miss seeing it. In case of a large volume, you may want to schedule the fsck
check to happen after-hours in case the scan takes a long time.

With regards to issues with memory, the free -m command will give you an overview of how much
memory and swap are available on your server. It won’t tell you what exactly is using up all your memory,
but you’ll use it to see if you’re in jeopardy of running out. The free column from the output of the
free command will show you how much memory is remaining, and allow you to make a decision on
when to take action:

Figure 22.4: Checking the available memory on an Ubuntu server

In Chapter 8, Monitoring System Resources, we took a look at the htop command, which helps us answer
the question of “what” is using up our resources. Using htop (once installed), you can sort the list
of processes by CPU or memory usage by pressing F6 and then selecting a new sort field, such as
PERCENT_CPU or PERCENT_MEM. This will give you an idea of what is consuming resources on your
server, allowing you to make a decision on what to do about it. The action you take will differ from one
process to another, and your solution may range from adding more memory to the server to tuning
the application to have a lower memory ceiling. But what do you do when the results from htop don’t
correlate to the usage you’re seeing? For example, what if your load average is high, but no process
seems to be consuming a large portion of CPU?

One command I haven’t discussed so far in this book is iotop. While not installed by default, the iotop
utility is definitely a must-have, so I recommend you install the iotop package. The iotop utility itself
needs to be run as root or with sudo:

sudo iotop

The iotop command will allow you to see how much data is being written to or read from your disks.
Input/Output (IO) definitely contributes to a system’s load, and not all resource monitoring utilities will
show this usage. If you see a high load average but nothing in your resource monitor shows anything
to account for it, check the IO.

Chapter 22 527

The iotop utility is a great way to do that as if data is bottle-necked while being written to disk, which
can account for a serious overhead in IO that will slow other processes down. If nothing else, it will
give you an idea of which process is misbehaving, in case you need to kill it:

Figure 22.5: The iotop utility running on an Ubuntu server

The iotop window will refresh on its own, sorting processes by the column that is highlighted. To
change the highlight, you’ll only need to press the left and right arrows on your keyboard. You can sort
processes by columns such as IO, SWAPIN, DISK WRITE, DISK READ, and others. When you’re finished
with the application, press q to quit.

The utilities we looked at in this section are very useful when identifying issues with bottle-necked
resources. What you do to correct the situation after you find the culprit will depend on the daemon.
Perhaps there’s an invalid configuration, or the daemon has encountered a fault and needs to be
restarted. Often, checking the logs may lead you to an answer as to why a daemon misbehaves. In
the case of full storage, almost nothing beats ncdu, which will almost always lead you directly to the
problem. Tools such as htop and iotop allow you to view additional information regarding resource
usage as well, and htop even allows you to kill a misbehaving process right from within the application,
by pressing F9.

 What do you do when system memory (RAM) becomes physically defective? It happens more often than
you’d think. In the next section, we’ll look at a way we can test our RAM to see if it’s defective or not.

Diagnosing defective RAM
All server and computing components can and will fail eventually, but there are a few pieces of
hardware that seem to fail more often than others. Fans, power supplies, and hard disks definitely
make the list of common things administrators will end up replacing, but defective memory is also a
situation I’m sure you’ll run into eventually.

Troubleshooting Ubuntu Servers528

Although memory sticks becoming defective is something that could happen, I made it the last section
in this chapter because unfortunately, I can’t give you a definitive list of symptoms to look out for that
indicate that memory is the source of an issue. RAM issues are very mysterious in nature, and each
time I’ve run into one, I’ve always stumbled across memory being bad only after troubleshooting
everything else. It’s for this reason that nowadays I’ll often test the memory on a server or workstation
first since it’s very easy to do. Even if memory has nothing to do with an issue, it’s worth checking
anyway since it could become a problem later.

Most distributions of Linux (Ubuntu included) feature Memtest86+ right on the installation media.
Whether you create a bootable CD or flash drive, there’s a memory test option available from the
Ubuntu Server media. When you first boot from the Ubuntu Server media, you’ll see an icon toward
the bottom indicating that you can press a key to bring up a menu (if you don’t press a key, the installer
will automatically start). Next, you’ll be asked to choose your language, and then you’ll be shown an
installation menu. Among the choices there will be a Test memory option:

Figure 22.6: The main menu of the Ubuntu installer, showing a Test memory option

Other editions of Ubuntu, such as the Ubuntu desktop distribution or any of its derivatives, also feature
an option to test memory. Even if you don’t have installation media handy for the server edition, you
can use whichever version you have.

When you choose the Test memory option from your installation media, the Memtest86+ program
will immediately get to work and start testing your memory (press Esc to exit the test). The test may
take a long time, depending on how much memory your workstation or server has installed. It can
take minutes or even hours to complete. Generally speaking, when your machine has defective RAM,
you’ll see a bunch of errors show up relatively quickly, usually within the first 5-10 minutes.

Chapter 22 529

If you don’t see errors within 15 minutes, you’re most likely in good shape. In my experience, every time
I’ve run into defective memory, I’ve seen errors in 15 minutes or less (usually within 5). Theoretically,
though, you could very well have a small issue with your memory modules that may not show up until
after 15 minutes, so you should let the test finish if you can spare the time for it.

The main question becomes when to run Memtest86+ on a machine. In my experience, symptoms
of bad memory are almost never the same from one machine to another. Usually, you’ll run into a
situation where a server doesn’t boot properly, applications close unexpectedly, applications don’t
start at all, or perhaps an application is behaving irregularly. In my view, testing memory should be
done whenever you experience a problem that doesn’t necessarily seem straightforward. In addition,
you may want to consider testing the memory on your server before you roll it out into production.
That way, you can ensure that it starts out as free of hardware issues as possible. If you install new
memory modules, make sure to test the RAM right away.

If the test does report errors, you’ll next want to find out which memory module is faulty. This can be
difficult, as some servers can have more than a dozen memory modules installed. To narrow it down,
you’d want to test each memory module independently if you can, until you find out which one is
defective. You should also continue to test the other modules, even after you discover the culprit. The
reason for this is that having multiple memory modules going bad isn’t outside the realm of possibility,
considering whatever situation led to the first module becoming defective may have affected others.

Another tip I’d like to pass along regarding memory is that when you do discover a bad stick of memory,
it’s best to erase the hard disk and start over if you can. I understand that this isn’t always feasible, and
you could have many hours logged into setting up a server. Some servers can take weeks to rebuild,
depending on their workload. But at least keep in mind that any data that passes through defective
RAM can become corrupted.

This means that data at rest (data stored on your hard disk) may be corrupt if it was sitting in a defective
area of RAM before it was written to disk. When a server or workstation encounters defective RAM, you
really can’t trust it anymore. I’ll leave the decision on how to handle this situation up to you (hopefully
you’ll never encounter it at all), but just keep this in mind as you plan your course of action. Personally,
I don’t trust an installation of any operating system after its hardware has encountered such issues.

I also recommend that you check the capacitors on your server’s motherboard whenever you’re
having odd issues. Although this isn’t necessarily related to memory, I mention it here because the
symptoms are basically the same as bad memory when you have bad capacitors. I’m not asking you to
get a voltage meter or do any kind of electrician work, but sometimes it may make sense to open the
case of your server, shine a flashlight on the capacitors, and see if any of them appear to be leaking
fluid or expanding. The reason I bring this up is that I’ve personally spent hours troubleshooting a
machine (more than once) where I would test the memory and hard disk and look through system logs,
without finding any obvious causes, only to later look at the hardware and discover that capacitors
on the motherboard were leaking. It would have saved me a lot of time if I had simply looked at the
capacitors. And that’s really all you have to do: just take a quick glance around the motherboard and
look for anything that doesn’t seem right.

Troubleshooting Ubuntu Servers530

Summary
While Ubuntu is generally a very stable and secure platform, it’s important to be prepared for problems
occurring and to know how to deal with them. In this chapter, we discussed common troubleshooting
we can perform when our servers stop behaving themselves. We started off by evaluating the scope,
which gives us an understanding of how many users or servers are affected by the issue. Then, we
looked into Ubuntu’s log files, which are a treasure trove of information that we can use to pinpoint
issues and narrow down the problem. We also covered several networking issues that can come up,
such as issues with DHCP, DNS, and routing. We certainly can’t predict problems before they occur, nor
can we be prepared in advance for every type of problem that can possibly happen. However, applying
sound logic and common sense to problems will go a long way in helping us figure out the root cause.

In the next chapter, we will take a look at preventing disasters in the first place and recovering from
them if they happen anyway. See you there!

Further reading
•	 Reporting Bugs in Ubuntu Server: https://learnlinux.link/report-bugs

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://learnlinux.link/report-bugs
https://packt.link/LWaZ0

23
Preventing Disasters

In an enterprise network, a disaster can strike at any time. While, as administrators, we always do our
best to design the most stable and fault-tolerant server implementations we possibly can, what matters
most is how we are able to deal with disasters when they do happen. As stable as server hardware is,
any component of a server can fail at any time. In the face of a disaster, we need a plan. How can you
attempt to recover data from a failed disk? What do you do when your server all of a sudden decides
it doesn’t want to boot? These are just some of the questions we’ll answer as we take a look at several
ways we can prevent and recover from disasters. In our final chapter, we’ll cover the following topics:

•	 Preventing disasters
•	 Utilizing Git for configuration management
•	 Implementing a backup plan
•	 Utilizing bootable recovery media

We’ll start off our final chapter by looking at a few tips to help prevent disaster.

Preventing disasters
As we proceed through this chapter, we’ll look at ways we can recover from disasters. However, if
we can prevent a disaster from occurring in the first place, then that’s even better. We certainly can’t
prevent every type of disaster that could possibly happen but having a good plan in place and following
that plan will lessen the likelihood. A good disaster recovery plan will include a list of guidelines to
be followed with regard to implementing new servers and managing current ones.

This plan may include information such as an approved list of hardware (such as hardware configurations
known to work efficiently in an environment), as well as rules and regulations for users, a list of
guidelines to ensure physical and software security, proper training for end users, and method change
control. Some of these concepts we’ve touched on earlier in the book but are worth repeating from
the standpoint of disaster prevention.

Preventing Disasters532

First, we talked about the principle of least privilege back in Chapter 21, Securing Your Server. The idea
is to give your users as few permissions as possible. This is very important for security, as you want
to ensure only those trained in their specific jobs are able to access and modify only the resources
that they are required to. Accidental data deletion happens all the time. To take full advantage of this
principle, create a set of groups as part of your overall security design. List departments and positions
in your company and the types of activities each is required to perform. Create system groups that
correspond to those activities. For example, create an accounting-ro and accounting-rw group to
categorize users within your Accounting department that should have the ability to only read or read
and write data. If you’re simply managing a home file server, be careful of open network shares where
users have read and write access by default. By allowing users to do as little as possible, you’ll prevent
a great many disasters right away.

In Chapter 2, Managing Users and Permissions (as well as Chapter 21, Securing Your Server), we talked
about best practices for the sudo command. While the sudo command is useful, it’s often misused. By
default, anyone that’s a member of the sudo group can use sudo to do whatever they want. We talked
about how to restrict sudo access to particular commands, which is always recommended. Only trusted
administrators should have full access to sudo. Everyone else should have sudo permissions only if
they really need them, and even then, only when it comes to commands that are required for their
job. A user with full access to sudo can delete an entire filesystem, so it should never be taken lightly.

In regard to network shares, it’s always best to default to read-only whenever possible. This isn’t just
because of the possibility of a user accidentally deleting data; it’s always possible for applications to
malfunction and delete data as well. With a read-only share, the modification or deletion of files isn’t
possible. Additional read-write shares can be created for those who need them, but if possible, always
default to read-only.

Although I’ve spent a lot of time discussing security in a software sense, physical security is important
too. For the purposes of this book, physical security doesn’t really enter the discussion much because
our topic is specifically Ubuntu Server, and nothing you install on Ubuntu is going to increase the
physical security of your servers. It’s worth noting, however, that physical security is every bit as
important as securing your operating systems, applications, and data files.

All it would take is someone tripping over a network cable in a server room to disrupt an entire subnet
or cause a production application to go offline. Server rooms should be locked, and only trusted
administrators should be allowed to access your equipment. I’m sure this goes without saying and may
sound obvious, but I’ve worked at several companies that did not secure their server room. Nothing
good ever comes from placing important equipment within arm’s reach of unauthorized individuals.

In this section, I’ve mentioned Chapter 21, Securing Your Server, a couple of times. A good majority of
a disaster prevention plan includes a focus on security. This includes, but is not limited to, ensuring
security updates are installed in a timely fashion, utilizing security applications such as failure monitors
and firewalls, and ensuring secure settings for OpenSSH. I won’t go over these concepts again here since
we’ve already covered them, but essentially security is a very important part of a disaster prevention
plan. After all, users cannot break what they cannot access, and hackers will have a harder time
penetrating your network if you designed it in a security-conscious way.

Chapter 23 533

Effective disaster prevention consists of a list of guidelines for things such as user management, server
management, application installations, security, and procedure documents. A full walkthrough of
proper disaster prevention would be an entire book in and of itself. My goal with this section is to
provide you with some ideas you can use to begin developing your own plan. A disaster prevention plan
is not something you’ll create all at once but is rather something you’ll create and refine indefinitely
as you learn more about security and what types of things to watch out for.

The configuration files on your server determine the behavior of your services and applications, and
backing up can enable you to recover their state. When it comes to managing the state of files, Git is
a very powerful tool to do just that, and we’ll talk about it next.

Utilizing Git for configuration management
One of the most valuable assets on a server is its configuration. This is second only to the data the server
stores. Often, when we implement new technology on a server, we’ll spend a great deal of time editing
configuration files all over the server to make it work as best as we can. This can include any number
of things, from Apache virtual host files to DHCP server configuration, DNS zone files, and more. If a
server were to encounter a disaster from which the only recourse was to completely rebuild it, the last
thing we’d want to do is re-engineer all of this configuration from scratch. This is where Git comes in.

In a typical development environment, an application being developed by a team of engineers can be
managed by Git, each contributing to a repository that hosts the source code for their software. One
of the things that makes Git so useful is how you’re able to go back to previous versions of a file in an
instant, as it keeps a history of all changes made to the files within the repository.

Git isn’t just useful for software engineers, though. It’s also a really useful tool we can leverage for
keeping track of configuration files on our servers. For our use case, we can use it to record changes to
configuration files and push them to a central server for backup. When we make configuration changes,
we push the changes back to our Git server. If for some reason we need to restore the configuration
after a server fails, we can simply download our configuration files from Git back onto our new
server. Another useful aspect of this approach is that if an administrator implements a change to a
configuration file that breaks a service, we can simply revert to a known working commit and we’ll
be immediately back up and running. You can even correlate changes in log files to changes made
at around the same time in a Git repository, which makes it easier to narrow down the root cause of
an issue.

Configuration management on servers is so important, in fact, I highly recommend that every Linux
administrator takes advantage of version control for this purpose. Although it may seem a bit tricky
at first, it’s actually really easy to get going once you practice with it. Once you’ve implemented Git
for keeping track of all your server’s configuration files, you’ll wonder how you ever lived without it.
We covered Git briefly in Chapter 15, Automating Server Configuration with Ansible, where I walked you
through creating a repository on GitHub to host Ansible configuration. However, using Github is not
mandatory in order to benefit from version control. Sure, it’s definitely convenient – but not required.
The only required component for a server to function as a Git server is the presence of the git package:

sudo apt install git

Preventing Disasters534

And just like that, you now have a Git server. That may have seemed overly simplistic (and it is) but
there aren’t a great deal of requirements in order to set up Git as a central resource on your network.
Since Git uses OpenSSH by default, you’ll be able to store repositories on a server that has the git
package and is accessible to clients on your network.

If for some reason you don’t have an extra server to act as your Git server, you can install the git
package on another instance and add that functionality to an existing server. My personal preference
is for each server to focus on one task (and perform that one task well) but sometimes the budget of
the organization may not allow for a stand-alone server for every service.

Now, think of a configuration directory that’s important to you, and that you want to place into version
control. A good example is the /etc/apache2 directory on a web server. That’s what I’ll use in my
examples in this section. But you’re certainly not limited to that. Any configuration directory you
would rather not lose is a good candidate. If you choose to use a different configuration path, change
the paths I give you in my examples to that path.

On the server, create a directory to host your repositories. I’ll use /git in my examples:

sudo mkdir /git

Next, you’ll want to modify this directory to be owned by the administrative user you use on your
Ubuntu servers. Typically, this is the user that was created during the installation of the distribution.
You can use any user you want actually, just make sure the user is allowed to use OpenSSH to access
your Git server. Change the ownership of the /git directory so it is owned by this user. My user on my
Git server is jay, so in my case, I would change the ownership with the following command:

sudo chown jay:jay /git

Next, we’ll create our Git repository within the /git directory. For Apache, I’ll create a bare repository
for it within the /git directory. A bare repository is basically a skeleton of a Git repository that doesn’t
contain any useful data, just some default configuration to allow it to act as a Git folder. To create the
bare repository, cd into the /git directory and execute:

git init --bare apache2

You should see the following output:

Initialized empty Git repository in /git/apache2/

That’s all we need to do on the server for now for the purposes of our Apache repository. On your client
(the server that houses the configuration you want to place under version control), we’ll copy this bare
repository by cloning it. To set that up, create a /git directory on your Apache server (or whatever
kind of server you’re backing up) just as we did before. Then, cd into that directory and clone your
repository with the following command:

git clone 192.168.1.101:/git/apache2

Chapter 23 535

For that command, replace the IP address with either the IP address of your Git server or its hostname
if you’ve created a DNS entry for it. You should see the following output, warning us that we’ve cloned
an empty repository:

warning: You appear to have cloned an empty repository

This is fine, we haven’t actually added anything to our repository yet. If you were to cd into the directory
we just cloned and list its storage, you’d see it as an empty directory. If you use ls -a to view hidden
directories as well, you’ll see a .git directory inside. Inside the .git directory, we’ll have configuration
items for Git that allow this repository to function properly. For example, the config file in the .git
directory contains information on where the remote server is located. We won’t be manipulating this
directory; I just wanted to give you a quick overview of what its purpose is.

Note that if you delete the .git directory in your cloned repository, that basically removes version
control from the directory and makes it a normal directory.

Anyway, let’s continue. We should first make a backup of our current /etc/apache2 directory on our
web server, in case we make a mistake while converting it to being version controlled:

sudo cp -rp /etc/apache2 /etc/apache2.bak

Then, we can move all the contents of /etc/apache2 into our repository:

sudo mv /etc/apache2/* /git/apache2

The /etc/apache2 directory is now empty. Be careful not to restart Apache at this point; it won’t see
its configuration files and will fail. Remove the (now empty) /etc/apache2 directory:

sudo rm /etc/apache2

Now, let’s make sure that Apache’s files are owned by root. The problem though is if we use the chown
command, as we normally would to change ownership, we’ll also change the .git directory to be
owned by root as well. We don’t want that, because the user responsible for pushing changes should
be the owner of the .git folder. The following command will change the ownership of the files to
root, but won’t touch hidden directories such as .git:

sudo find /git/apache2 -name '.?*' -prune -o -exec chown root:root {} +

When you list the contents of your repository directory now, you should see that all files are owned
by root, except for the .git directory, which should be owned by your administrative user account.

Next, create a symbolic link to your Git repository so the apache2 daemon can find it:

sudo ln -s /git/apache2 /etc/apache2

At this point, you should see a symbolic link for Apache, located at /etc/apache2. If you list the contents
of /etc while grepping for apache2, you should see it as a symbolic link:

ls -l /etc | grep apache2

Preventing Disasters536

The directory listing will look similar to the following:

lrwxrwxrwx 1 root root 37 2020-06-25 20:59 apache2 -> /git/apache2

If you reload Apache, nothing should change and it should find the same configuration files as it did
before, since its directory in /etc maps to /git/apache2, which includes the same files it did before:

sudo systemctl reload apache2

If you see no errors, you should be all set. Otherwise, make sure you created the symbolic link properly.

Next, we get to the main attraction. We’ve copied Apache’s files into our repository, but we didn’t
actually push those changes back to our Git server yet. To set that up, we’ll need to associate the files
within our /git/apache2 directory into version control. The reason for this is the files simply being in
the git repository folder isn’t enough for Git to care about them. We have to tell Git to pay attention to
individual files. We can add every file within our Git repository for Apache by entering the following
command from within that directory:

git add .

This basically tells Git to add everything in the directory to version control. You can actually do the
following to add an individual file:

git add <filename>

In this case, we want to add everything, so we used a period in place of a directory name to add the
entire current directory.

If you run the git status command from within your Git repository, you should see output indicating
that Git has new files that haven’t been committed yet. A Git commit simply finalizes the changes
locally. Basically, it packages up your current changes to prepare them for being copied to the server.
To create a commit of all the files we’ve added so far, cd into your /git/apache2 directory and run
the following to stage a new commit:

git commit -a -m "My first commit."

With this command, the -a option tells Git that you want to include anything that’s changed in your
repository. The -m option allows you to attach a message to the commit, which is actually required.
If you don’t use the -m option, it will open your default text editor and allow you to add a comment
from there.

Finally, we can push our changes back to the Git server:

git push origin master

By default, the git suite of commands utilizes OpenSSH, so our git push command should create an
SSH connection back to our server and push the files there. You won’t be able to inspect the contents
of the Git directory on your Git server, because it won’t contain the same file structure as your original
directory. Whenever you pull a Git repository though, the resulting directory structure will be just as
you left it.

Chapter 23 537

From this point forward, if you need to restore a repository onto another server, all you should need
to do is perform a Git clone. To clone the repository into your current working directory, execute the
following:

git clone 192.168.1.101:/git/apache2

Now, each time you make changes to your configuration files, you can perform a git commit and then
push the changes up to the server to keep the content safe:

git commit -a -m "Updated config files."git push origin master

Now we know how to create a repository, push changes to a server, and pull the changes back down.
Finally, we’ll need to know how to revert changes should our configuration get changed with non-
working files. First, we’ll need to locate a known working commit. My favorite method is using the tig
command. The tig package must be installed for this to work, but it’s a great utility to have:

sudo apt install tig

The tig command (which is just git backward) gives us a semi-graphical interface to browse through
our Git commits. To use it, simply execute the tig command from within a Git repository. In the
following example screenshot, I’ve executed tig from within a Git repository on one of my servers:

Figure 23.1: An example of the tig command, looking at a repository for example scripts

While using tig, you’ll see a list of Git commits, along with their dates and comments that were entered
with each. To inspect one, press the up and down arrows to change your selection, then press Enter on
the one you want to view. You’ll see a new window, which will show you the commit hash (which is a
long string of alphanumeric characters), as well as an overview of which lines were added or removed
from the files within the commit. To revert one, you’ll first need to find the commit you want to revert
to and get its commit hash. The tig command is great for finding this information. In most cases, the
commit you’ll want to revert to is the one before the change took place. In my example screenshot, I
fixed the syntax issue on 9/26/2020. If I want to restore that file, I should revert to the commit below
that. I can get the commit hash by highlighting that entry and pressing Enter. It’s at the top of the
window. Then, I can exit tig by pressing q, and then revert to that commit:

git checkout <commit hash>

And just like that, the entire directory tree for the repository instantly changes to exactly what it was
before the bad commit took place. I can then restart or reload the daemon for this repository, and it
will be back to normal.

Preventing Disasters538

At this point, you’d want to test the application to make sure that the issue is completely fixed. After
some time has passed and you’re finished testing, you can make the change permanent. First, we
switch back to the most recent commit:

git checkout main

Then, we permanently switch back to the commit that was found to be working properly:

git revert --no-commit <commit hash>

Then, we can commit our reverted Git repository and push it back to the server:

git commit -a -m "The previous commit broke the application. Reverting."git
push origin master

As you can see, Git is a very useful ally to utilize when managing configuration files on your servers.
This benefits disaster recovery, because if a bad change is made that breaks a daemon, you can easily
revert the change. If the server were to fail, you can recreate your configuration almost instantly by
just cloning the repository again. There’s certainly a lot more to Git than what we’ve gone over in this
section, so feel free to pick up a book about it if you wish to take your knowledge to the next level.
But in regard to managing your configuration with Git, all you’ll need to know is how to place files
into version control, update them, and clone them to new servers. Some services you run on a server
may not be a good candidate for Git, however. For example, managing an entire MariaDB database
via Git would be a nightmare, since there is too much overhead with such a use case, and database
entries would likely change too rapidly for Git to keep up. Use your best judgment. If you have some
configuration files that are only manipulated every once in a while, they’ll be a perfect candidate for Git.

Backups are one of those things that some people don’t seem to take seriously until it’s too late. Data
loss can be a catastrophic event for an organization, so it’s imperative that you implement a solid
backup plan. In the next section, we’ll look at what that entails.

Implementing a backup plan
Creating a solid backup plan is one of the most important things you’ll ever do as a server administrator.
Even if you’re only using Ubuntu Server at home as a personal file server, backups are critical. During
my career, I’ve seen disks fail many times. I often hear arguments about which hard disk manufacturer
beats others in terms of longevity, but I’ve seen disk failures so often, I don’t trust any of them. All
disks will fail eventually, it’s just a matter of when. And when they do fail, they’ll usually fail hard with
no easy way to recover data from them. A sound approach to managing data is that any disk or server
can fail, and it won’t matter, since you’ll be able to regenerate your data from other sources, such as
a backup or secondary server.

There’s no one best backup solution, since it all depends on what kind of data you need to secure, and
what software and hardware resources are available to you. For example, if you manage a database
that’s critical to your company, you should back it up regularly. If you have another server available,
set up a replication secondary server so that your primary database isn’t a single point of failure. Not
everyone has an extra server lying around, so sometimes you have to work with what you have available.

Chapter 23 539

This may mean that you’ll need to make some compromises, such as creating regular snapshots of
your database server’s storage volume or regularly dumping a backup of your important databases to
an external storage device.

The rsync utility is one of the most valuable pieces of software around to server administrators. It
allows us to do some really wonderful things. In some cases, it can save us quite a bit of money. For
example, online backup solutions are wonderful in the sense that we can use them to store off-site
copies of our important files. However, depending on the volume of data, they can be quite expensive.
With rsync, we can back up our data in much the same way, with not only our current files copied over
to a backup target but also differentials. If we have another server to send the backup to, even better.

At one company I managed servers for, they didn’t want to subscribe to an online backup solution. To
work around that, a server was set up as a backup point for rsync. We set up rsync to back up to the
secondary server, which housed quite a lot of files. Once the initial backup was complete, the secondary
server was sent to one of our other offices in another state. From that point forward, we only needed
to run rsync weekly, to back up everything that had been changed since the last backup. Sending files
via rsync to the other site over the internet was rather slow, but since the initial backup was already
complete before we sent the server there, all we needed to back up each week was differentials. Not
only is this an example of how awesome rsync is and how we can configure it to do pretty much what
paid solutions do but the experience was also a good example of utilizing what you have available to you.

Since we’ve already gone over rsync in Chapter 12, Sharing and Transferring Files, I won’t repeat too
much of that information here. But since we’re on the subject of backing up, the --backup-dir option
is worth mentioning again. This option allows you to copy files that would normally be replaced to
another location. As an example, here’s the rsync command I mentioned in Chapter 12, Sharing and
Transferring Files:

CURDATE=$(date +%m-%d-%Y)
export $CURDATE
sudo rsync -avb --delete --backup-dir=/backup/incremental/$CURDATE /src /target

This command was part of the topic of creating an rsync backup script. The first command simply
captures today’s date and stores it in a variable named $CURDATE. In the actual rsync command, we
refer to this variable. The -b option (part of the -avb option string) tells rsync to make a copy of any
file that would normally be replaced. If rsync is going to replace a file on the target with a new version,
it will move the original file to a new name before overwriting it. The --backup-dir option tells rsync
that when it’s about to overwrite a file, to put it somewhere else instead of copying it to a new name.
We give the --backup-dir option a path, where we want the files that would normally be replaced to
be copied. In this case, the backup directory includes the $CURDATE variable, which will be different
every day. For example, a backup run on 8/16/2022 would have a backup directory of the following
path, if we used the command I gave as an example:

/backup/incremental/8-16-2022

Preventing Disasters540

This essentially allows you to keep differentials. Files on /src will still be copied to /target, but the
directory you identify as --backup-dir will contain the original files before they were replaced that day.

On my servers, I use the --backup-dir option with rsync quite often. I’ll typically set up an external
backup drive, with the following three folders:

•	 current

•	 archive

•	 logs

The current directory always contains a current snapshot of the files on my server. The archive
directory on my backup disks is where I point the --backup-dir option. Within that directory will be
folders named with the dates that the backups were taken. The logs directory contains log files from
the backup. Basically, I redirect the output of my rsync command to a log file within that directory,
each log file being named with the same $CURDATE variable so I’ll also have a backup log for each day
the backup runs. I can easily look at any of the logs for which files were modified during that backup,
and then traverse the archive folder to find an original copy of a file. I’ve found this approach to work
very well. Of course, this backup is performed with multiple backup disks that are rotated every week,
with one always off-site. It’s always crucial to keep a backup off-site in case of a situation that could
compromise your entire local site.

The rsync utility is just one of many you can utilize to create your own backup scheme. The plan you
come up with will largely depend on what kind of data you’re wanting to protect and what kind of
downtime you’re willing to endure.

Ideally, we would have an entire warm site with servers that are carbon copies of our production
servers, ready to be put into production should any issues arise, but that’s also very expensive, and
whether you can implement such a routine will depend on your budget. However, Ubuntu has many
great utilities available that you can use to come up with your own system that works. If nothing else,
utilize the power of rsync to back up to external disks and/or external sites.

A tool that is very valuable when working to recover physical servers is USB recovery media, such as
flash drives with a bootable ISO image written to them. In the next section, we’ll take a look.

Utilizing bootable recovery media
The concept of live media is a wonderful thing, as we can boot into a completely different working
environment from the operating system installed on our device and perform tasks without disrupting
installed software on the host system. The desktop version of Ubuntu, for example, offers a complete
computing environment we can use in order to not only test hardware and troubleshoot our systems
but also browse the web just as we would on an installed system. In terms of recovering from disasters,
live media becomes a saving grace.

As administrators, we run into one problem after another. This gives us our job security. Computers
often seemingly have a mind of their own, failing when least expected (as well as seemingly every
holiday). Our servers and desktops can encounter a fault at any time, and live media allows us to separate
hardware issues from software issues, by troubleshooting from a known good working environment.

Chapter 23 541

One of my favorites when it comes to live media is the desktop version of Ubuntu. Although geared
primarily toward end users who wish to install Ubuntu on a laptop or desktop, as administrators we can
use it to boot a machine that normally wouldn’t, or even recover data from failed disks. For example,
I’ve used the Ubuntu live media to recover data from both failed Windows and Linux systems, by
booting the machine with the live media and utilizing a network connection to move data from the
bad machine to a network share. Often, when a computer or server fails to boot, the data on its disk is
still accessible. Assuming the disk wasn’t encrypted during installation, you should have no problem
accessing data on a server or workstation using live media such as Ubuntu live media.

Sometimes, certain levels of failure require us to use different tools. While Ubuntu’s live media is great,
it doesn’t work for absolutely everything. One situation is a failing disk. Often, you’ll be able to recover
data using Ubuntu’s live media from a failing disk, but if it’s too far gone, then the Ubuntu media will
have difficulty accessing data from it as well. Tools such as Clonezilla specialize in working with hard
disks and may be a better choice.

Live media can totally save the day. The Ubuntu live image in particular is a great boot disk to have
available to you, as it gives you a very extensive environment you can use to troubleshoot systems
and recover data.

One of the best aspects of using the Ubuntu live image is that you won’t have to deal with the underlying
operating system and software set at all, you can bypass both by booting into a known working desktop,
and then copy any important files from the drive right onto a network share. Another important feature
of Ubuntu live media is the memory test option. Quite often, strange failures on a computer can be
traced to defective memory. Other than simply letting you install Ubuntu, the live media is a Swiss
Army knife of many tools you can use to recover a system from disaster. If nothing else, you can use
live media to pinpoint whether a problem is software- or hardware-related. If a problem can only be
reproduced in the installed environment but not in a live session, chances are a configuration problem
is to blame. If a system also misbehaves in a live environment, it may help you identify a hardware
issue. Either way, every good administrator should have live media available to troubleshoot systems
and recover data when the need arises.

Summary
In this chapter, we looked at several ways in which we can prevent and recover from disasters. Having
a sound prevention and recovery plan in place is an important key to managing servers efficiently.
We need to ensure we have backups of our most important data ready for whenever servers fail, and
we should also keep backups of our most important configurations. Ideally, we’ll always have a warm
site set up with preconfigured servers ready to go in a situation where our primary servers fail, but
one of the benefits of open source software is that we have a plethora of tools available to us that we
can use to create a sound recovery plan. In this chapter, we looked at leveraging rsync as a useful
utility for creating differential backups, and we also looked into setting up a Git server we can use
for configuration management, which is also a crucial aspect of any sound prevention plan. We also
talked about the importance of live media in diagnosing issues.

Preventing Disasters542

And with this chapter, this book comes to a close. Writing this book has been an extremely joyful
experience. I was thrilled to write the first edition when Ubuntu 16.04 was in development, it was a
fun project to write the second edition and update it to cover Ubuntu 18.04, the third edition for 20.04,
and I’m even more thrilled to have had the opportunity to update this body of work yet again for 22.04
in this latest edition. I’d like to thank each and every one of you, my readers, for taking the time to read
this book. In addition, I would like to thank all of the viewers of my YouTube channel, Learn Linux TV
(https://www.learnlinux.tv), because I probably wouldn’t have had the opportunity to write this in
the first place had it not been for my viewers helping make my channel so popular.

I’d also like to thank Packt Publishing for giving me the opportunity to write a book about one of my
favorite technologies. Writing this book was definitely an honor. When I first started with Linux in
2002, I never thought I’d actually be an author, teaching the next generation of Linux administrators
the tricks of the trade. I wish each of you the best of luck, and I hope this book is beneficial to you
and your career.

For additional content, be sure to check out https://learnlinux.tv for even more content. I have
quite a few training videos available there, free of charge.

Further reading
•	 Pro Git by Scott Chacon and Ben Straub: https://learnlinux.link/git-book
•	 Introduction to RAID terminology and concepts: https://learnlinux.link/raid-concepts

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LWaZ0

https://www.learnlinux.tv
https://learnlinux.tv
https://learnlinux.link/git-book
https://learnlinux.link/raid-concepts
https://packt.link/LWaZ0

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
•	 Improve your learning with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Fully searchable for easy access to vital information
•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Linux Administration Best Practices

Scott Alan Miller

ISBN: 9781800568792

•	 Find out how to conceptualize the system administrator role
•	 Understand the key values of risk assessment in administration
•	 Apply technical skills to the IT business context
•	 Discover best practices for working with Linux specific system technologies
•	 Understand the reasoning behind system administration best practices
•	 Develop out-of-the-box thinking for everything from reboots to backups to triage
•	 Prioritize, triage, and plan for disasters and recoveries
•	 Discover the psychology behind administration duties

https://www.packtpub.com/product/linux-administration-best-practices/9781800568792?_ga=2.241478594.1148568648.1662973894-1283992011.1633000128

Other Books You May Enjoy546

Linux Command Line and Shell Scripting Techniques

Vedran Dakic

Jasmin Redzepagic

ISBN: 9781800205192

•	 Get an introduction to the command line, text editors, and shell scripting
•	 Focus on regular expressions, file handling, and automating complex tasks
•	 Automate common administrative tasks
•	 Become well-versed with networking and system security scripting
•	 Get to grips with repository management and network-based file synchronization
•	 Use loops, arguments, functions, and arrays for task automation

https://www.packtpub.com/product/linux-command-line-and-shell-scripting-techniques/9781800205192?_ga=2.241478594.1148568648.1662973894-1283992011.1633000128

Other Books You May Enjoy 547

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Mastering Ubuntu Server, Fourth Edition, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803234245
https://packt.link/r/1803234245

Index

Symbols
24-bit subnet 211
/etc/exports file 258
/etc/fstab file 184

adding 186-188
contents, analyzing 184-186

/etc/passwd file 39, 40
/etc/shadow file 41-43
/etc/skel

default configuration files, distributing
with 43, 44

A
access log 289
Active Directory (AD) 32
additional storage volumes

adding 173-176
adduser command

using 36, 37
administrator access

configuring, with sudo 53-55
Advanced Package Tool (APT) 68
Amazon Lightsail 410
Amazon Machine Image (AMI) 444, 447
Amazon Web Services (AWS) 410, 461

certification 458
concepts 413-416
documentation 458
EC2 instances, running only when needed 456
experimenting and learning 458
online training and labs 457

Ubuntu Server instance, creating 432-443
unneeded EC2 instances, stopping or

terminating 457
Ansible

combining, with Terraform for full deployment
solution 481-483

need for 315
settings, configuring 321-323
working with 319-321

Ansible’s pull method
using 330-334

Apache
additional modules, installing 291-293
configuring 285-291
installing 285-291
securing, with TLS 293-299

application log files
viewing 94, 95

Application Logs 516
apt

Debian packages, managing with 68-71
A Record 290
arguments 88

configuring, to ps command 137-141
attack surface 486

lowering 485-489
Auto Scaling

used, for scaling Ubuntu EC2 deployments
automatically 446, 447

group, creating 448-454
AWS account

creating 416, 417
signing up 417-421
user security, implementing 421-427

Index550

AWS Billing Dashboard
billing alert, adding 456
billing information, viewing 455
unneeded backups, removing 456

AWS Certified Cloud Practitioner 458
AWS Certified Sysops Administrator 458
AWS EC2 instance

Ubuntu, deploying as 428
AWS Management Console 417

B
backported 81
backup plan

implementing 538-540
Bash 115

history 117-119
Berkeley Internet Name Daemon (BIND)

package
external DNS, setting up with 237, 238

bootable flash drive
creating 8-11
partitioning layout, planning 11, 12

bootable recovery media
utilizing 540, 541

Bourne Again Shell 115
broadcast address 230

C
Caching Name Server 237
Canonical Livepatch service

reference link 494
used, for automatically installing patches 494

Canonical Name (CNAME) record 242
Certificate Signing Request (CSR) 297
Classless Inter-Domain

Routing (CIDR notation) 229

client servers
configuring 323-327

cloning
used, for simplifying virtual machine creation

354-356
cloud computing

using, considerations 411-413
Cloud Deployment

automating 462
CloudFormation 463
CloudFront 428
cloud infrastructure

versus on-premises infrastructure 410
command line

used, for managing Virtual Machine (VM) 356,
357

command-line tricks
utilizing 119-122

commands
issuing, with OpenSSH 217-219

Common Vulnerabilities and
Exposures (CVEs) 490

responding to 490
config file

used, for simplifying SSH connections 223-225
configuration management

Git, utilizing 533-538
need for 313, 315

container 360
deploying, via Kubernetes cluster 402-408
using 360

containerd 394
containerization 359, 360
container orchestration 380, 381
Container Runtime 394
Content Delivery Network (CDN) 428
contents

viewing, of files 91-94

Index 551

control groups (cgroups) 361
cron

used, for scheduling tasks 151-153
cron job 330
cross-platform 463
curdate 130

D
daemons 148
database server

preparations, for setting up 265-267
Debian 64
Debian packages 65, 66

backing up 78, 79
managing, with apt 68-71
restoring 78, 79
versus Snap packages 65

default configuration files
distributing, with /etc/skel 43, 44

defective RAM
diagnosing 527-529

device, selecting for server
laptop 4
physical desktop 4
physical servers 3
Raspberry Pi 5
Virtual Machine (VM) 5
Virtual Private Server (VPS) 5

df command
using 156-158

DHCP reservation 209
DigitalOcean 410
directories

copying 97-99
moving 97-99
ownership, modifying 60, 61
permissions, setting on 56

renaming 97-99
Disaster Recovery 462
disasters

preventing 531-533
Disk Operating System (DOS) 178
disks

decrypting, with Linux Unified Key Setup
(LUKS) 507, 508

encrypting, with Linux Unified Key Setup
(LUKS) 507, 508

disk usage
df command, using 156-158
investigating 158-161
viewing 155

DNS server
adding 236, 237
external DNS, setting up with bind 237, 238
hosts, adding 239-243
internal DNS, setting up 239-243

Docker
installing 362, 363
versus LXD 361, 362

Docker containers
managing 363-370

Dockerfiles
Docker image creation,

automating with 371, 372
Docker Hub 362

reference link 363
Docker image creation

automating, with Dockerfiles 371, 372
document root 286
Domain Name System (DNS) 213
Dynamic Host Control Protocol (DHCP) 15
Dynamic Host Control

Protocol (DHCP) server 228
setting up, for IP addresses 231-236

Index552

E
EC2 instance deployment

automating 470-476
EC2 instances

running, only when needed 456
stopping or terminating 457

Elastic Block Store (EBS) 415
Elastic Compute Cloud (EC2) 415
Elastic Container Service (ECS) 362
Elastic Kubernetes Service (EKS) 416
Elastic Load Balancer (ELB) 415
Error Correction Code (ECC) 4
error log 289
Etcher 8
export 255
export root 255

F
Fail2ban 498

configuring 498-502
installing 498-502

files
contents, viewing 91-94
copying 97-99
editing, with Nano text editors 99, 100
editing, with Vim text editors 99, 100
moving 97-99
ownership, modifying 60, 61
permissions, setting on 56
renaming 97-99
sharing, with Windows

users via Samba 249-254
transferring, with rsync 258-261
transferring, with Secure Copy (SCP) 261-263

file server considerations 247, 248
filesystem cache 162

Filesystem Hierarchy Standard (FHS) 90, 182
firewall 505

setting up 505, 506
Fish 116
Flannel 400
for loop 128

G
gateway 243
Git

utilizing, for configuration
management 533-538

Git commit 536
Git repository

creating 316-319
Google Cloud Platform (GCP) 410
grants 273
Graphical User Interface (GUI) 100, 139, 341
groups

managing 46-49
purpose 32

GUID Partition Table (GPT) 178

H
hard links

using 111-113
hardware enablement (HWE) 81

updates, advantage 81-83
hash bang 125
Homebrew

installation link 384
utilizing 384

hostname
setting 201-204

htop
used, for viewing resource usage 168-171

Index 553

I
IAM role

setting up, for Session Manager 428-432
Identity and Access Management (IAM) 415
if statement 126
infinite loop 128
Infrastructure as Code (IaC) 314, 463
inodes 111
Input/Output (IO) 526
input streams 108-110
installation media

obtaining 6-8
Integrated Development

Environment (IDE) 104
internet gateway

setting up 243, 244
Internet Service Provider (ISP) 237
inventory file 315

setting up 321-323
IP addresses

DHCP server, setting up for 231-236
scheme, planning 227-231

J
jobs

managing 133-136

K
Kernel-based Virtual Machine (KVM) 338, 362
Keyboard, Video, and Mouse (KVM) 4
ksh 116
kubeadm package 397
Kube Control (kubectl) 392
kubectl package 397
kubelet package 398

Kubernetes cluster
containers, deploying via 402-408
installing 397-402
packages 397
preliminary setup 393-397
setting up 392, 393

Kubernetes (K8s) 381
testing, by preparing lab environment 381-383

L
lab environment

preparing, for Kubernetes testing 381-383
laptop 4
launch template

creating 447, 448
options 447

LearnLinuxTV 213
Lightweight Directory Access

Protocol (LDAP) 32
Linode 410
Linux

MicroK8s, installing on 383, 384
name resolution 213-215

Linux commands 85-89
Linux Containers (LXC) 361
Linux filesystem layout 89-91
Linux package management 63-65
Linux shell 115, 116
Linux signals 146
Linux Unified Key Setup (LUKS)

used, for decrypting disks 507
used, for encrypting disks 507

live media
concept 540

load average 166-168
Logical Volume Manager (LVM) 173, 267

benefits 174

Index554

logical volumes, formatting 195-197
utilizing 190, 191
volumes, removing 197
working with 191-195

logical volumes
formatting 195-197

long-term support (LTS) 7, 81
loopback addresses 203
LVM snapshots 198, 199
LXD 361

versus Docker 361
LXD containers

managing 373-377

M
macOS

MicroK8s, installing on 384-386
MariaDB

best practices, for secure
database servers 502-504

configuration files 269-271
databases, managing 272-278
installing 267-269

Master Boot Record (MBR) 178
memory

usage, monitoring 161
Memtest86+ 528, 529
MicroK8s

installing, on Linux 383, 384
installing, on macOS 384-386
installing, on Windows 386-389
interacting with 390-392
utilizing 383

Microsoft Azure 410
misbehaving processes

dealing with 145-147
Multi-Factor Authentication (MFA) 422
myvar 128

N
Nano text editors

editing with 100-102
used, for editing files 99, 100

NCurses Disk Usage 159
network

interfaces, managing 204-208
issues, tracing 520-524
services, setting up 227

Network Time Protocol (NTP) 133
Nextcloud

configuring 303-310
setting up 303-310

NFS 247
NFS shares

setting up 254-258
NGINX

configuring 299-303
installing 299-303

NodePort Service 406
non-Graphical User Interface (non-GUI) 67
Non-Volatile Memory Express (NVMe) 176

O
object storage 415
on-premises infrastructure

versus cloud infrastructure 410
OpenSSH 495

commands, issuing with 217-219
installing 216, 217
securing 495-498
working with 215

OpsWorks 464
orphaned apt packages

cleaning up 79-81
Out of Memory (OOM) Killer 163

Index 555

output streams 108-111
output variable 478

P
package maintainer 64
packages

additional repositories, adding 75-77
repositories, managing 75
searching 73-75

partitioning 11
layout, planning 11, 12
tips 12

partitions
creating 177-180
formatting 180-182

passphrase, of OpenSSH key
modifying 223

passwords
expiration information, setting 50, 51
managing 49
policies 49
policy, setting 51, 52
user accounts, locking 49, 50
user accounts, unlocking 49, 50

patches
installing, automatically with Canonical

Livepatch service 494
Perl 37
permissions

modifying 59, 60
ownership of objects, modifying 60, 61
setting, on files and directories 56
viewing 56-58

Personal Package Archive (PPA)
adding 77, 78

physical desktop 4
physical servers 3
playbook 323

Pluggable Authentication Module (PAM) 51
Pod Network 398
principle of least privilege 489, 532
print working directory 86
private key

generating 220
privileged commands

running, with sudo 33, 34
processes, on Linux system

priority, modifying 141-145
Process ID (PID) 137
PS1 prompt 202
ps command 136

arguments, configuring to 137-141
running processes, viewing with 136, 137

public key
copying, to remote server 221, 222
generating 220

pull method 315

Q
Quick Emulator (QEMU) 338

R
Raspberry Pi 5

Ubuntu, installing on 25-28
Red Hat 64
Redundant Array of Independent

Disks (RAID) 176
region

selecting 427, 428
resources

issues, troubleshooting 524-527
Return on Investment (ROI) 411
root cause analysis

conducting 513-515
Route 53 415

Index556

RPM packages 65
rsync

used, for transferring files 258-261
backup script, writing 129-131

running processes
viewing, with ps command 136, 137

S
Samba 247

files sharing, with Windows users via 249-254
scope

evaluating 511-513
scripts

writing 124-129
secondary database server

setting up 278-282
Secure Copy (SCP)

used, for transferring files 261-263
secure database servers

MariaDB, best practices 502-504
Secure Sockets Layer (SSL) 293
security groups 416

managing, with Terraform 476-479
security updates

installing 490-494
Serial Advanced Technology

Attachment (SATA) 184
server

device, selecting 3
role, determining 2, 3

server memory 161-163
Server Message Block (SMB) 248
Services for NFS 248
Session Manager

IAM role, setting up 428-432
shebang 125
shell script 37

Simple Storage Service (S3) 415
Snap packages 66, 67

managing, with snap 71-73
versus Debian packages 65

software
installing 68
removing 68

SSH agent
utilizing 222

SSH connections
simplifying, with config file 223-225

SSH key management
OpenSSH key passphrase, changing 223
private key, generating 220
public key, copying to remote server 221, 222
public key, generating 220, 221
SSH agent, utilizing 222
working with 219

SSH passphrase
modifying 223

Stable Release Updates (SRUs) 64
standard error (stderr) 124
standard input (stdin) 108, 124
standard output (stdout) 108, 124
Start of Authority (SOA) line 240
static IP addresses

assigning 209-213
storage devices

formatting 176, 177
partitioning 176, 177

storage volume
backing up 188-190
mounting 182, 183
restoring 188-190
unmounting 182, 183

streams 108
subnets 229
sub-shell 130

Index 557

subtree checking 255
sudo

administrator access, configuring with 53-55
locking down 509
using, to run privileged commands 33, 34

swap
managing 163-166

swap file 12
swap partition 12
symbolic

using 111-113
symbolic link (symlink) 112
system logs

viewing 515-520
system processes

managing 148-151

T
Tab Completion 119
teletypewriter 138
Terraform 461, 463

installing 465-470
used, for combining Ansible with full

deployment solution 481-483
used, for managing security groups 476-479
workflow 463, 464

Terraform destroy 479
using 479-481

Terraform plan 474
Time to Live (TTL) 240

Transport Layer Security (TLS) 285
used, for securing Apache 293-299

U
Ubuntu

deploying, as AWS EC2 instance 428
installing, on Raspberry Pi 25-28

Ubuntu AMIs
creating 444-446
deploying 444-446

Ubuntu CVE tracker
reference link 490

Ubuntu EC2 deployments
scaling, automatically with Auto

Scaling 446, 447
Ubuntu One account

URL 494
Ubuntu Server

installing 12-24
instance, creating in AWS 432-443

ufw command
reference link 506

Uncomplicated Firewall (UFW) 505
Uninterruptible Power Supply (UPS) 4
units 148
Universally Unique Identifier (UUID) 184
Universal Naming Convention (UNC) 253
universal packages 66
unix_socket authentication 268
useradd command

using 34, 35
use root

usage 32, 33
users

creating 34
purpose 32
removing 34-39
switching 45, 46

V
variables 122-124
Vim

editing with 102-108

Index558

Vim text editors
used, for editing files 99, 100

VirtualBox 5
download link 5

virtual host 286
virtualization 359

consideration 338, 339
prerequisites 337-339

virtual machine creation
simplifying, with cloning 354-356

Virtual Machine Manager 341
virtual machine network

bridging 351-353
virtual machine server

setting up 339-345
Virtual Machine (VM) 5, 319, 514, 337

creating 345-350
managing, via command line 356, 357
weaknesses 359

Virtual MFA device 423
Virtual Private Cloud (VPC) 415
Virtual Private Server (VPS) 5, 45, 267, 290, 410
VM Template 354
Voice over IP (VoIP) 228
vulnerability chain 487

W
web server deployment

automating 327-330
Windows

MicroK8s, installing on 386-389
Windows users

files sharing, via Samba 249-254

Z
zombie process 146
zone file 237, 239

Zsh 116

	Cover
	CopyRight Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Deploying Ubuntu Server
	Technical requirements
	Determining your server’s role
	Choosing a device for our server
	Physical server
	Physical desktop
	Laptop
	Virtual machine
	Virtual private server
	Raspberry Pi

	Obtaining installation media
	Creating a bootable flash drive
	Planning the partitioning layout

	Installing Ubuntu Server
	Installing Ubuntu on a Raspberry Pi
	Summary
	Relevant tutorials

	Chapter 2: Managing Users and Permissions
	Understanding the purpose of users and groups
	Understanding when to use root
	Using sudo to run privileged commands

	Creating and removing users
	Using useradd
	Using adduser
	Removing users

	Understanding the /etc/passwd and /etc/shadow files
	Understanding the /etc/passwd file
	Understanding the /etc/shadow file

	Distributing default configuration files with /etc/skel
	Switching users
	Managing groups
	Managing passwords and password policies
	Locking and unlocking user accounts
	Setting password expiration information
	Setting a password policy

	Configuring administrator access with sudo
	Setting permissions on files and directories
	Viewing permissions
	Changing permissions
	Changing the ownership of objects

	Summary
	Relevant videos
	Further reading

	Chapter 3: Managing Software Packages
	Understanding Linux package management
	Understanding the differences between Debian and Snap packages
	Debian packages
	Snap packages

	Installing and removing software
	Managing Debian packages with apt
	Managing Snap packages with snap

	Searching for packages
	Managing package repositories
	Adding additional repositories
	Adding Personal Package Archives

	Backing up and restoring Debian packages
	Cleaning up orphaned apt packages
	Taking advantage of hardware enablement updates
	Summary
	Relevant video
	Further reading

	Chapter 4: Navigating and Essential Commands
	Learning essential Linux commands
	Understanding the Linux filesystem layout
	Viewing the contents of files
	Viewing application log files
	Summary
	Relevant video
	Further reading

	Chapter 5: Managing Files and Directories
	Copying, moving, and renaming files and directories
	Editing files with the Nano and Vim text editors
	Editing with Nano
	Editing with Vim

	Input and output streams
	Using symbolic and hard links
	Summary
	Relevant videos

	Chapter 6: Boosting Your Command-line Efficiency
	Understanding the Linux shell
	Understanding Bash history
	Learning some useful command-line tricks
	Understanding variables
	Writing simple scripts
	Putting it all together – Writing an rsync backup script
	Summary
	Relevant videos
	Further reading

	Chapter 7: Controlling and Managing Processes
	Managing jobs
	Understanding the ps command
	Viewing running processes with ps
	Configuring arguments to ps

	Changing the priority of processes
	Dealing with misbehaving processes
	Managing system processes
	Scheduling tasks with cron
	Summary
	Relevant videos
	Further reading

	Chapter 8: Monitoring System Resources
	Viewing disk usage
	Using df
	Diving deeper into disk usage

	Monitoring memory usage
	Understanding server memory
	Managing swap

	Understanding load average
	Viewing resource usage with htop
	Summary
	Relevant videos
	Further reading

	Chapter 9: Managing Storage Volumes
	Adding additional storage volumes
	Formatting and partitioning storage devices
	Creating a partition
	Formatting partitions

	Mounting and unmounting volumes
	Understanding the /etc/fstab file
	Analyzing the contents of /etc/fstab
	Adding to the /etc/fstab file

	Backing up and restoring volumes
	Utilizing LVM
	Getting started with LVM
	Formatting logical volumes
	Removing volumes with LVM
	Understanding LVM snapshots

	Summary
	Relevant videos
	Further reading

	Chapter 10: Connecting to Networks
	Setting the hostname
	Managing network interfaces
	Assigning static IP addresses
	Understanding Linux name resolution
	Getting started with OpenSSH
	Installing OpenSSH
	Issuing commands with OpenSSH

	Getting started with SSH key management
	Generating public and private keys
	Copying your public key to a remote server
	Utilizing an SSH agent
	Changing the passphrase of an OpenSSH key

	Simplifying SSH connections with a config file
	Summary
	Relevant videos
	Further reading

	Chapter 11: Setting Up Network Services
	Planning your IP address scheme
	Setting up a DHCP server for serving IP addresses
	Adding a DNS server
	Setting up external DNS with bind
	Setting up internal DNS and adding hosts

	Setting up an internet gateway
	Summary
	Further reading

	Chapter 12: Sharing and Transferring Files
	File server considerations
	Sharing files with Windows users via Samba
	Setting up NFS shares
	Transferring files with rsync
	Transferring files with SCP
	Summary
	Relevant videos
	Further reading

	Chapter 13: Managing Databases
	Preparations for setting up a database server
	Installing MariaDB
	Understanding the MariaDB configuration files
	Managing MariaDB databases
	Setting up a secondary database server
	Summary
	Further reading

	Chapter 14: Serving Web Content
	Installing and configuring Apache
	Installing additional Apache modules
	Securing Apache with TLS
	Installing and configuring NGINX
	Setting up and configuring Nextcloud
	Summary
	Relevant videos
	Further reading

	Chapter 15: Automating Server Configuration with Ansible
	Understanding the need for configuration management
	Why Ansible?
	Creating a Git repository
	Getting started with Ansible
	Making your servers do your bidding
	Setting up an inventory file and configuring Ansible settings
	Configuring client servers

	Putting it all together – automating web server deployment
	Using Ansible’s pull method
	Summary
	Relevant videos
	Further reading

	Chapter 16: Virtualization
	Prerequisites and considerations
	Setting up a virtual machine server
	Creating virtual machines
	Bridging the virtual machine network
	Simplifying virtual machine creation with cloning
	Managing virtual machines via the command line
	Summary
	Relevant video
	Further reading

	Chapter 17: Running Containers
	What is containerization?
	Understanding the differences between Docker and LXD
	Installing Docker
	Managing Docker containers
	Automating Docker image creation with Dockerfiles
	Managing LXD containers
	Summary
	Relevant videos
	Further reading

	Chapter 18: Container Orchestration
	Container orchestration
	Preparing a lab environment for Kubernetes testing
	Utilizing MicroK8s
	Installing MicroK8s on Linux
	Installing MicroK8s on macOS
	Installing MicroK8s on Windows
	Interacting with MicroK8s

	Setting up a Kubernetes cluster
	Preliminary setup
	Installing Kubernetes

	Deploying containers via Kubernetes
	Summary
	Relevant videos
	Further reading

	Chapter 19: Deploying Ubuntu in the Cloud
	Understanding the difference between on-premises and cloud infrastructure
	Important considerations when considering cloud computing as a potential solution
	Becoming familiar with some basic AWS concepts
	Creating an AWS account
	Signing up for AWS
	Implementing basic user security

	Choosing a region
	Deploying Ubuntu as an AWS EC2 instance
	Setting up an IAM role for Session Manager
	Creating an Ubuntu Server instance in AWS

	Creating and deploying Ubuntu AMIs
	Automatically scaling Ubuntu EC2 deployments with Auto Scaling
	Creating a launch template
	Creating an Auto Scaling group

	Keeping costs down: understanding how to save money and make cost-effective decisions
	Viewing billing information
	Adding a billing alert
	Removing unneeded backups
	Running EC2 instances only when they’re needed
	Stopping or terminating unneeded EC2 instances

	Taking the cloud further: additional resources to grow your knowledge
	Online training and labs
	Certification
	Keep experimenting and learning
	AWS documentation

	Summary
	Further reading

	Chapter 20: Automating Cloud Deployments with Terraform
	Why it’s important to automate your infrastructure
	Introduction to Terraform and how it can fit within your workflow
	Installing Terraform
	Automating an EC2 instance deployment
	Managing security groups with Terraform
	Using Terraform to destroy unused resources
	Combining Ansible with Terraform for a full deployment solution
	Summary

	Chapter 21: Securing Your Server
	Lowering your attack surface
	Understanding and responding to CVEs
	Installing security updates
	Automatically installing patches with the Canonical Livepatch service
	Securing OpenSSH
	Installing and configuring Fail2ban
	MariaDB best practices for secure database servers
	Setting up a firewall
	Encrypting and decrypting disks with LUKS
	Locking down sudo
	Summary
	Further reading

	Chapter 22: Troubleshooting Ubuntu Servers
	Evaluating the scope
	Conducting a root cause analysis
	Viewing system logs
	Tracing network issues
	Troubleshooting resource issues
	Diagnosing defective RAM
	Summary
	Further reading

	Chapter 23: Preventing Disasters
	Preventing disasters
	Utilizing Git for configuration management
	Implementing a backup plan
	Utilizing bootable recovery media
	Summary
	Further reading

	Other Books You May Enjoy
	Index

